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Abstract

Constrained Clustering allows to make the clustering task either easier or more accurate by integrating user-constraints,
which can be instance-level or cluster-level constraints. Few works consider the integration of different kinds of con-
straints, they are usually based on declarative frameworks and they are often exact methods, which either enumerate
all the solutions satisfying the user-constraints, or find a global optimum when an optimization criterion is specified.
In a previous work, we have proposed a model for Constrained Clustering based on a Constraint Programming frame-
work. It is declarative, allowing a user to integrate user-constraints and to choose an optimization criterion among
several ones. In this article we present a new and substantially improved model for Constrained Clustering, still based
on a Constraint Programming framework. It differs from our earlier model in the way partitions are represented by
means of variables and constraints. It is also more flexible since the number of clusters does not need to be fixed
beforehand; only a lower and an upper bound on the number of clusters have to be provided. In order to make the
model-based approach more efficient, we propose new global optimization constraints with dedicated filtering algo-
rithms. We show that such a framework can easily be embedded in a more general process and we illustrate this on
the problem of finding the optimal Pareto front of a bi-criterion constrained clustering task. We compare our approach
with existing exact approaches, based either on a branch-and-bound approach or on graph coloring on twelve datasets.
Experiments show that the model outperforms exact approaches in most cases.
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1. Introduction

Constrained Clustering has received much attention this last decade. It allows to make the clustering task either
easier or more accurate by integrating user-constraints. Several kinds of constraints can be considered. First, con-
straints may be used to limit the size or the diameter of clusters; second, they can enforce expert knowledge instances
must be or cannot be in the same cluster (must-link or cannot-link constraints). Much work has focused on instance-
based constraints and has adapted classical clustering methods to handle must-link or cannot-link constraints. A small
number of earlier studies have considered the integration of different kinds of constraints. These studies are based on
declarative frameworks and offer exact methods that either enumerate all the solutions satisfying the user constraints,
or find a global optimum when an optimization criterion is given. For instance, in [1] a SAT based framework for con-
strained clustering has been proposed, integrating many kinds of user-constraints but limited to clustering tasks into
two clusters. A framework for conceptual clustering based on Integer Linear Programming has also been proposed
in [2]. In [3], we have presented a model based on Constraint Programming for constrained clustering. This model
allows to choose one among different optimization criteria and to integrate various kinds of user constraints. As far
as we know, the approach we propose is the only one able to handle different optimization criteria and all popular
constraints, for any number of clusters. It is based on Constraint Programming (CP): in such a paradigm, a constraint
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optimization problem or a constraint satisfaction problem is modeled by defining variables with their domains and
by expressing constraints on these variables. Solving a CP problem relies on two operations: constraint propagation
that reduces the domain of the variables by removing inconsistent values and branching that divides the problem in
subproblems, by taking an unassigned variable and by splitting its domain into several parts. It is important to notice
that modeling a task in Constraint Programming implies several choices, which have a high impact on the efficiency of
the approach: the choice of the variables and the choice of the constraints for the model, the development of filtering
algorithms dedicated to the task and the use of adapted search strategies for solving the model. A point in favor of CP
is that the requirement of getting an exact solution can be relaxed by using metaheuristics or local search methods. For
the time being, we have fully investigated exact methods, to push the efficiency of the framework as far as possible.
Approximate search strategies could be integrated in the future.

In this paper, we propose a new model for Constrained Clustering, still based on Constraint Programming, but sig-
nificantly improved compared to the previous model [3]. In the previous model, two sets of variables were introduced,
namely a variable for each cluster identifying a cluster by one of its points and a variable for each point expressing its
assignment to a cluster. The number of classes had to be fixed beforehand. The new model we present here contains
only a variable for each point, giving the index of the cluster the point belongs to. As a result, the constraints enforc-
ing the solution to be a partition and breaking symmetries are entirely different. The new model is lighter in terms
of the number of variables. It also enables to remove the restriction on the number of classes; only bounds on the
number of classes are required. Moreover, in order to make this model efficient, we have developed dedicated global
constraints for three optimization criteria: minimizing the maximal diameter, maximizing the split between clusters,
and minimizing the within-cluster sum of dissimilarities.

The approach we propose may be easily embedded in a general process for the task of Constrained Clustering.
Considering Data Mining as an iterative and interactive process composed of the classical steps of task formulation,
data preparation, application of a tool, thus requiring to set parameters, and validation of the results, a user can specify
the task at hand including or not some constraints and decide to change the settings according to the results. He/she
may decide to change the constraints, removing or relaxing some constraints, adding or hardening other constraints.
The modularity and declarativity of our model allow this easily. In this paper, we illustrate the integration of our model
in a more complex process by considering a bi-criterion clustering problem, namely finding the Pareto front when
minimizing the maximal diameter and maximizing the minimal split. To achieve this, our framework is integrated in
an algorithm, which alternatively calls our model to minimize the maximal diameter and then to maximize the split
between clusters with adapted constraints.

Our contributions are as follows.

• We propose a new model based on Constraint Programming, allowing to find an optimal solution for clustering
under constraints, given an optimization criterion. This new model improves substantially the previous one, it
is more modular (each criterion is implemented by a global constraint) and it is much more efficient.

• We show that such a framework can easily be embedded in a more general process and we illustrate this on the
problem of finding the optimal Pareto front of a bi-criterion constrained clustering task. As far as we know, this
is the first approach to handle bi-criterion clustering in presence of user-constraints.

• We propose new global optimization constraints with dedicated filtering algorithms, thus allowing to make the
model more efficient.

• We compare this model with existing exact approaches, based either on a branch-and-bound approach [4] or on
graph coloring [5] on twelve datasets. Experiments show that the model we propose is generally more efficient.
Moreover we compare the two models based on CP that we have developed and we show that the different
changes (search strategy and development of global constraints) allow to improve the model.

The paper is organized as follows. Section 2 is dedicated to preliminaries on Constrained Clustering and Constraint
Programming. Related work is presented in Section 3. Section 4 is devoted to the presentation of both CP models,
the first one presented in [3] and the new one. The filtering algorithms for the optimization criteria are presented in
Section 5. We show in Section 6 how our framework can be easily integrated for solving a bi-criterion constrained
clustering task. Experiments are presented in Section 7, showing the performance and the flexibility of our model.
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2. Preliminaries

2.1. Constrained Clustering
Cluster analysis is a Data Mining task that aims at partitioning a given set of objects into homogeneous and/or

well-separated subsets, called classes or clusters. It is often formulated as the search for a partition such that the
objects inside the same cluster are similar, while being different from the objects belonging to other clusters. These
requirements are usually expressed by an optimization criterion and the clustering task is usually defined as finding a
partition of objects that optimizes the given criterion. In the remainder of the paper, we consider a dataset of n objects
O = {o1, . . . , on} and a dissimilarity measure d(oi, o j) between any two objects oi, o j ∈ O. A partition ∆ of objects into
k classes C1, . . . ,Ck is such that: (1) for all c ∈ [1, k]1, Cc , ∅, (2) ∪cCc = O and (3) for all c , c′, Cc ∩ Cc′ = ∅. The
optimization criterion can be among others:

• Minimizing the maximal diameter of clusters: the maximal diameter of a partition ∆ is the largest dissimilarity
between two objects in the same cluster,

D(∆) = max
c∈[1,k],oi,o j∈Cc,

(d(oi, o j)).

A clustering task that minimizes this criterion is also called nonhierarchical complete-link clustering.

• Maximizing the minimal split between clusters: the minimal split between clusters of a partition ∆ is the smallest
dissimilarity between two objects of different clusters,

S (∆) = min
c<c′∈[1,k],oi∈Cc,o j∈Cc′

(d(oi, o j)).

A clustering task that maximizes this criterion is also called single-link clustering.

• Minimizing the within-cluster sum of dissimilarities (WCSD): this sum for a partition ∆ is defined as

WCS D(∆) =
∑

c∈[1,k]

1
2

∑
oi,o j∈Cc

d(oi, o j).

For this criterion the dissimilarity d(oi, o j) is usually measured by the squared Euclidean distance between oi

and o j.

• Minimizing the within-cluster sum of squares (WCSS): in a Euclidean space the within-cluster sum of squares is
the sum of the squared Euclidean distances between each object oi and the centroid mc of the cluster containing
oi

WCS S (∆) =
∑

c∈[1,k]

∑
oi∈Cc

||oi − mc||
2.

Let us notice that, when the squared Euclidean distance is used for measuring the dissimilarities, the WCSS
criterion is mathematically equivalent to the WCSD criterion standardized by the division by the size of each
cluster:

WCS S (∆) =
∑

c∈[1,k]

1
2|Cc|

∑
oi,o j∈Cc

d(oi, o j).

Most of the clustering algorithms rely on an optimization criterion. All of these criteria are NP-Hard, except the split
criterion. In consequence, most of the algorithms search for a local optimum. For instance, the k-means algorithm
finds a local optimum for the WCSS criterion as well as FPF (Furthest Point First) [6] for the diameter criterion.
Several optima may exist, some may be closer to the one expected by the user. In order to model the task better, but
also in the hope of reducing the complexity, user specified constraints are added, leading to Constrained Clustering that
aims at finding clusters that satisfy the user constraints. User constraints can be classified into cluster-level constraints,

1For a discrete variable, [1, k] denotes the set of integers from 1 to k.
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specifying requirements on clusters, or instance-level constraints, specifying requirements on pairs of objects. Most
of the attention has been put on instance-level constraints, first introduced in [7]. Commonly, two kinds of constraints
are used: must-link and cannot-link. A must-link constraint on two objects oi and o j expresses that they must be in
the same cluster: ∀c ∈ [1, k], oi ∈ Cc ⇔ o j ∈ Cc. A cannot-link constraint on two objects oi and o j expresses that
they must not be in the same cluster: ∀c ∈ [1, k], ¬(oi ∈ Cc ∧ o j ∈ Cc).

Cluster-level constraints impose requirements on the clusters. The minimum capacity constraint requires that each
cluster has a number of objects greater than a given threshold α: ∀c ∈ [1, k], |Cc| ≥ α, whereas the maximum capacity
constraint requires each cluster to have a number of objects inferior to a predefined threshold β: ∀c ∈ [1, k], |Cc| ≤ β.

The maximum diameter constraint specifies an upper bound γ on the diameter of the clusters: ∀c ∈ [1, k],∀oi, o j ∈

Cc, d(oi, o j) ≤ γ. The minimum split constraint, also called the δ-constraint in [8], requires the distance between any
two points of different clusters to be superior to a given threshold δ: ∀c ∈ [1, k],∀c′ , c,∀oi ∈ Cc,∀o j ∈ Cc′ , d(oi, o j) ≥
δ. As observed in [8], the maximum diameter constraint can be represented by a conjunction of cannot-link constraints
and the minimum split constraint can be represented by a conjunction of must-link constraints.

The ε-constraint introduced in [8] requires for each point oi to have in its neighborhood of radius ε at least another
point belonging to the same cluster: ∀c ∈ [1, k],∀oi ∈ Cc,∃o j ∈ Cc, o j , oi and d(oi, o j) ≤ ε. This constraint
tries to capture the notion of density, introduced in DBSCAN [9]. We have extended it by proposing a density-based
constraint, stronger than the ε-constraint: it requires that for each point oi, its neighborhood of radius ε contains at
least m points belonging to the same cluster as oi.

In the last ten years, many works have been done to extend classical algorithms for handling must-link and cannot-
link constraints. This is achieved either by modifying the dissimilarity measure, or the objective function or the search
strategy. Recently, several works have investigated declarative approaches of constrained clustering, which aim at
extending traditional algorithms to different types of user-constraints. A presentation of these works is given in
Section 3.

2.2. Bi-criterion Constrained Clustering
Clustering with the criterion of minimizing the maximal diameter aims at finding homogeneous clusters, but it

often suffers from the dissection effect [10], i.e. quite similar objects may be classified in different clusters, in order
to keep the diameters small. On the other hand, clustering with the criterion of maximizing the minimal split, which
aims at finding well separated clusters, often suffers from the chain effect [11], i.e. a chain of closed objects may
lead to group very different objects in the same cluster. The popular WCSS criterion, which minimizes the sum of
the squared distances between points and the center of their cluster also suffers from undesirable effects. Considering
this criterion, objects that should be in a large group may be classified in different clusters in order to keep this sum
small. Figure 1 gives an illustration of these effects. Image A shows three groups that can be easily identified. Image
B shows the obtained solution with the diameter criterion when the number of clusters is set to 3. In this partition,
some points are very close but they are classified in two different groups. The partition obtained when considering the
split criterion is shown in Image C. Because of the chain effect, the largest group contains points that are very far each
from other. The optimal solution with the WCSS criterion is shown in Image D. In this partition, some points that are
very close are grouped in different clusters.

A good partition with homogeneous and well-separated clusters should have a minimal diameter and a maximal
split. Unfortunately, such a partition in general does not exist, since the two criteria are often conflicting. This problem
can be modeled by considering the bi-criterion of maximizing the minimal split between clusters and minimizing the
maximal diameter, as introduced in [5]. Considering these two criteria together is natural and allows to capture
both the homogeneity and the separation requirements for a good clustering. A general approach for handling two
optimization criteria is to find the Pareto optimal solutions. A Pareto optimal solution is a solution such that it is not
possible to improve the value of one criterion without degrading the value of the other one. A partition ∆′ dominates
a partition ∆ if and only if:

D(∆′) ≤ D(∆) and S (∆′) > S (∆)

or
D(∆′) < D(∆) and S (∆′) ≥ S (∆).

A partition ∆ is Pareto optimal if and only if there is no partition ∆′ that dominates ∆. Two Pareto optimal solutions
∆1 and ∆2 are equivalent if D(∆1) = D(∆2) and S (∆1) = S (∆2). A set P of Pareto optimal solutions is complete if any
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Figure 1: Effect with different criteria. A: intuitive groups; B: complete link; C: single link; D: WCSS

S

DCriterion space

Figure 2: Pareto front

Pareto optimal solution is either in P or equivalent to an element of P. The set P is minimal if no two partitions of
P are equivalent. The Pareto front is the projection of all the Pareto optimal solutions in the criterion space, i.e., the
set of pairs (D(∆), S (∆)) where ∆ is a Pareto optimal solution. If P is a complete and minimal set of Pareto optimal
solutions, the set {(D(∆), S (∆)) | ∆ ∈ P} is equal to the Pareto front. Figure 2 gives an illustration of the Pareto front.
A point in the Pareto front can correspond to several partitions.

If the user specifies a function on the criteria to optimize, for example max(S/D) or min[αD − (1 − α)S ] with
0 ≤ α ≤ 1, the optimal solution will be among the Pareto optima.

Let us consider, for instance, the example given in Figure 1. When the number of classes is set to 3, a complete
and minimal set of Pareto solutions is given in Figure 3. If the ratio S/D is minimized, the optimal solution is solution
5, which is the one that fits the best the intuitive groups. The user can specify conditions on the desired solutions. If
for instance it is specified that points 5 and 14 must be in the same cluster, then only solutions 5 and 6 are found. If
another condition is added, requiring the size of each group to be at least 2, only solution 5 is found.

A bi-criterion clustering algorithm finding a complete and minimal set of Pareto solutions for different values of
the number k of clusters is proposed in [5]. When k = 2, an exact polynomial algorithm is proposed in [12, 13].
However, to the best of our knowledge, there is no algorithm dealing with this bi-criterion, while supporting various
kinds of user constraints.

2.3. Constraint Programming

Constraint Programming (CP) is a powerful paradigm to solve combinatorial problems, based on Artificial Intel-
ligence or Operational Research methods. A Constraint Satisfaction Problem (CSP) is a triple 〈X,Dom,C〉 where:

• X = 〈x1, x2, . . . , xn〉 is a n-tuple of variables,

• Dom = 〈Dom(x1),Dom(x2), . . . ,Dom(xn)〉 is a corresponding n-tuple of domains such that xi ∈ Dom(xi),
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Figure 3: Pareto optimal solutions

• C = 〈C1,C2, ...,Ct〉 is a t-tuple of constraints where each constraint Ci expresses a condition on a subset of X.

A solution of a CSP is a complete assignment of values from Dom(xi) to each variable xi that satisfies all the constraints
of C. A Constraint Optimization Problem (COP) is a CSP with an objective function to be optimized. An optimal
solution of a COP is a solution of the CSP that optimizes the objective function. In general, solving a CSP is NP-Hard.
Nevertheless, the methods used by the solvers enable to efficiently solve a large number of real applications. They
rely on constraint propagation and search strategies.

Constraint propagation of a constraint c reduces the domain of the variables of c, by removing some or all incon-
sistent values, i.e., values that cannot be part of a solution of c. A set of propagators is associated to each constraint,
it depends on the kind of consistency required for this constraint. If arc consistency is required, the propagators
remove all the inconsistent values in each domain. If bound consistency is required, the propagators modify only
the bounds of the domains. The type of consistency is chosen by the programmer when the constraint is defined.
Different kinds of constraints are available for the programmer; they can be elementary constraints expressing arith-
metic or logic relations, or global constraints expressing meaningful n-ary relations. One of the best known global
constraints is the constraint alldifferent(x1, . . . , xn), which imposes the variables xi to be pairwise different. Global
constraints benefit from efficient propagation, performed by a filtering algorithm exploiting results from other domain
as for instance graph theory. From a logical point of view, a global constraint is equivalent to a conjunction of el-
ementary constraints, e.g. the constraint alldifferent(x1, x2, x3) is equivalent to the conjunction of binary constraints
x1 , x2 ∧ x1 , x3 ∧ x2 , x3. The interesting point is that a global constraint with its filtering algorithm has much
more powerful propagation than the set of propagators of the elementary constraints. Different global constraints are
developed, each one aims at exploiting more efficiently an n-ary relation. Filtering algorithms for global constraints
use operational research techniques or graph theory to achieve generalized arc consistency or bound consistency with
low complexity. A catalog of global constraints with more than 400 inventoried global constraints is maintained in
[14].

Example 2.1. Let X = {x1, x2, x3} with Dom(xi) = {1, 2}. Let P1 be a CSP defined on X by the constraints:

x1 , x2, x1 , x3, x2 , x3.

The arc consistency for each individual constraint xi , x j cannot remove any value from the domains Dom(xi) and
Dom(x j), since each value is part of a solution (xi = 1, x j = 2 and xi = 2, x j = 1). The CSP P1 is however inconsistent,
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Figure 4: Value graph for alldifferent(x1, x2, x3) with Dom(xi) = {1, 2}

there is no solution that satisfies all the constraints, but the propagation of individual constraints cannot detect it. Let
P2 be the CSP defined on X by the single constraint alldifferent(x1, x2, x3). The filtering algorithm for this constraint
[15] maintains the bipartite graph G = (V, E), with V = {x1, x2, x3} ∪ {1, 2} and E = {(xi, v) | v ∈ Dom(xi)}. This
bipartite graph, which is also called the value graph of X, is given in Figure 4. A matching M ⊆ E is a set of
disjoint edges, i.e. two edges in M cannot share a vertex. Two important observations on the relationship between the
constraint alldifferent(x1, . . . , xn) and matching are introduced in [15]:

• There is a matching of cardinality n if and only if the constraint alldifferent(x1, . . . , xn) is satisfiable.

• An edge (xi, v) belongs to a matching of cardinality n if and only if the value v is consistent with the constraint.

From these observations, the filtering algorithm can detect inconsistencies and can remove all the inconsistent values.
In this example, the bipartite graph G has no matching of cardinality 3. The constraint alldifferent(x1, x2, x3) is then
inconsistent.

In a CP solver, two steps, constraint propagation and branching, are repeated until a solution is found. Constraints
are propagated until a stable state, in which the domains of the variables are reduced as much as possible. If the
domains of all the variables are reduced to singletons then a solution is found. If the domain of a variable becomes
empty, then there exists no solution with the current partial assignment and the solver backtracks. In the other cases,
the solver chooses a variable whose domain is not reduced to a singleton and splits its domain into different parts, thus
leading to new branches in the search tree. The solver then explores each branch, activating constraint propagation
since the domain of a variable has been modified.

The search strategy can be determined by the programmer. If a depth-first strategy is used, the solver orders
branches following the order given by the programmer and explores in depth each branch. For a constraint opti-
mization problem, a branch-and-bound strategy can be integrated to a depth-first search: each time a solution, i.e. a
complete assignment of variables satisfying the constraints, is found, the value of the objective function for this solu-
tion is computed and a new constraint is added, expressing that a new solution must be better than this one. Assume
that the objective function is represented by a variable y, which is to be minimized. When a solution to the problem
is found, its corresponding objective value f is computed and the constraint y < f is added. This implies that only
the first best solution found is returned by the solver. The solver performs a complete search, pruning only branches
that cannot lead to a solution and therefore finds an optimal solution. The choice of variables and of values at each
branching is very important, since it may drastically reduce the search space and therefore computation time.

In the context of constraint optimization problems, an optimization constraint is a global constraint that is linked
to the objective function. Each solution induces a “cost” and the global constraint exploits this cost to filter not only
the variable which represents the objective function, but also other decision variables inside the constraint. The first
filtering algorithm for this kind of global constraints is proposed in [16]. A well-known example of extension of global
constraints to optimization constraints is the constraint cost gcc [17], which extends the Global Cardinality Constraint
with cost. For more details on global constraints, search and more generally on CP, we refer the reader to [18].

Example 2.2. Let us illustrate by a simple COP: find an assignment of letters to digits such that S END + MOS T =

MONEY , and maximizing MONEY . This problem can be modeled by a COP with eight variables S , E,N,D,M,O,T,Y ,
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Figure 5: Search trees with variable choice S , E,N,D,M,O,T,Y (left) and S ,T,Y,N,D, E,M,O (right)

having as domain the set of digits {0, . . . , 9} and a variable V of domain integer, which represents the objective func-
tion, which is to be maximized. Constraints for this problem are:

• the first digits must be different from 0: S , 0, M , 0,

• the values of the letters are pairwise different: alldifferent(S , E,N,D,M,O,T,Y),

• (1000S + 100E + 10N + D) + (1000M + 100O + 10S + T ) = 10000M + 1000O + 100N + 10E + Y ,

• V = 10000M + 1000O + 100N + 10E + Y .

The initial constraint propagation leads to a stable state, with the domains: DS = {9}, DE = {2, 3, 4, 5, 6, 7}, DM = {1},
DO = {0}, DN = {3, 4, 5, 6, 7, 8} and DD = DT = DY = {2, 3, 4, 5, 6, 7, 8}. Since some domains are not reduced to
singletons, branching is then performed. At the end of the search, we get the optimal solution with the assignment
S = 9, E = 7,N = 8,D = 2,M = 1,O = 0,T = 4,Y = 6, leading to MONEY = 10876.

Strategies specifying the way branching is performed are very important. When variables are chosen in the order
S , E,N,D,M,O,T,Y and when values are chosen following an increasing order, the search tree is composed of 29
nodes and 7 intermediary solutions (solutions satisfying all the constraints, better than the previous ones found but
not optimal). When variables are chosen in the order S ,T,Y,N,D, E,M,O, the search tree has only 13 nodes and 2
intermediary solutions. Figure 5 presents the two corresponding search trees, which are generated by Gist environment
of the Gecode solver [19]. In these search trees, blue circle is a stable state but not yet a solution, red square is a fail
state (there is no solution), green diamond is an intermediary solution and the orange diamond (the last diamond) is
the optimal solution.

3. Related Work

Due to the hardness of the clustering problem, there are few exact algorithms in the literature, and the algorithms
used are often heuristic, metaheuristic or approximation algorithms. Finding a partition maximizing the split between
clusters is a polynomial problem [5] but it becomes NP-Hard with user-constraints such as cannot-link constraints
[20]. Concerning the minimization of the maximal diameter, the problem is polynomial for k = 2, but it becomes
NP-Hard when k ≥ 3 [21].

An exact algorithm based on graph coloring is proposed in [21]. Graph coloring is used to check if a distance
between two objects can be the maximal diameter. Another exact approach uses a branch-and-bound search [4]. The
algorithm uses a hierarchical algorithm to find a good bound and a reordering point strategy to reduce the search space.
For the criterion of minimizing the within-cluster sum of dissimilarities, a repetitive branch-and-bound algorithm is
presented in [4]. To our knowledge, there is no exact algorithm that supports user-constraints with any of those criteria
with k > 2.

For the split-diameter bi-criterion optimization without user-constraints, an algorithm finding a complete and
minimal set of Pareto optimal solutions, which are partitions with at most kmax clusters, is proposed in [5]. It is
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proved that for n points, regardless of the number of classes k, regardless of the partition, the split value can be found
among the edges of the minimum weight spanning tree which is constructed from the matrix of dissimilarities between
objects. These values are ordered decreasingly and the split s will take value in this order. On the other hand, the
diameter value is one of the dissimilarities between two objects. All the dissimilarities are ordered decreasingly and
the diameter d will take value in this order. Each couple (s, d) is considered and in case without conflict will induce a
graph. Graph coloring on the induced graph helps to find a partition with minimum number of clusters (this number
is the chromatic number of the induced graph). The algorithm finds a complete and minimal set of Pareto optimal
solutions. Each solution is a partition with at most kmax classes.

In the case of bi-partition (k = 2), an exact polynomial algorithm to find Pareto optimal solutions is proposed in
[12, 13]. For k > 2, [13] also offers a 2-approximation algorithm. These two algorithms [12, 13] are both based on the
principle of [5]: a spanning tree is built to find the possible values for split and graph coloring tests are used to verify
if a dissimilarity can be the maximal diameter. However none of these bi-criterion cluster analysis approaches does
support any kind of user-constraints.

Most of the attention in constrained clustering has been put on instance-level constraints, i.e. must-link and cannot-
link constraints [22]. They were first introduced by Wagstaff [7]. Subsequently, many works have been done to extend
classical algorithms for handling must-link and cannot-link constraints, as for instance an extension of COBWEB
[7], of k-means [23, 24], hierarchical non supervised clustering [25] or spectral clustering [26, 27], etc. When the
constraints are tight, most of those algorithms may not find a solution that satisfies all the constraints even if such a
solution exists.

In recent years, it has been realized that many problems in Data Mining, including constrained clustering, can be
solved by generic optimization tools. Recent works investigate generic frameworks such as Constraint Programming,
SAT or Integer Linear Programming.

In [28], L. De Raedt et al. present a framework in Constraint Programming for k-pattern set mining and show how
it can be applied to conceptual clustering. In conceptual clustering, an intentional definition represented by a pattern
is associated to each class. The objective is to find pairs composed of classes and patterns, such that the elements in a
class satisfy the pattern. Constraints are imposed on patterns and groups. In order to find interesting solutions, some
optimization criteria can be introduced. J.-P. Métivier et al. present in [29] a constraint-based language expressing
queries to discover patterns in Data Mining. Conceptual clustering tasks can be expressed by queries as well as some
kinds of user constraints. The language elements are translated into SAT clauses which are solved by a SAT solver.

Davidson et al. propose a SAT framework [1] for constrained clustering, but only for problems with k = 2. Several
kinds of constraints are considered: must-link, cannot-link, diameter and split constraints. The algorithm allows to
obtain a global optimum with the criterion of diameter or split.

Mueller et al. propose in [2] an approach to constrained clustering based on Integer Linear Programming. This
approach takes a set of candidate clusters as input and builds a clustering by selecting a suitable subset. It allows
different kinds of constraints on clusters or on the set of clusters, but no constraint on individual objects. It integrates
different objective functions based on the quality of the clusters composing the clustering. The framework guarantees
to find a global optimum but requires a set of candidate clusters. This condition makes the framework less applicable
for clustering in general, since finding a good set of candidate clusters is a difficult task as the number of candidate
clusters is exponential compared to the number of objects. This approach is experimented for conceptual clustering
where candidate clusters might be generated from frequent patterns.

Recently, Babaki et al. present in [30] an exact approach for constrained clustering with the criterion of minimizing
the within-cluster sum of squares, based on Integer Linear Programming. This approach extends an exact algorithm
which uses column generation [31]. It allows must-link, cannot-link and all constraints that are anti-monotone. User-
constraints are handled within the branch-and-bound search, used for generating new columns. This approach is
experimented in [30] with small datasets containing less than 200 objects. For clustering task which maximizes the
inter-cluster distances, Kotthoff et al. present in their talk [32] a Constraint Programming approach and also assert the
flexibility and opportunities provided by a CP formulation.

Other tasks of clustering are based on a similarity graph between objects. Spectral clustering is a clustering
task which aims at minimizing the ratio cut criterion2 [33]. Wang et al. present in [27, 34] a flexible framework

2Based on a similarity measure s(oi, o j) between the objects, the ratio cut criterion is defined by (1/2)
∑

c∈[1,k](1/|Cc |)
∑

oi∈Cc ,o j<Cc s(oi, o j).
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for spectral clustering. The framework integrates different kinds of constraints and allows also to specify a threshold
setting a lower bound on how well the given constraints are satisfied. Zhi et al. present in [35] a framework for spectral
clustering which integrates logical combinations of constraints. Logical combinations of constraints are expressed as
linear equalities and inequalities so that they can be incorporated into various mathematical programming formulations
for clustering.

Multi-view spectral clustering is an extension of spectral clustering to multi-view datasets. Instead of combining
different views into a single objective function, Davidson et al. propose in [36] a natural formulation that treats the
problem as a multi-objective problem and solve it using Pareto optimization.

The clustering tasks we are interested in aim at finding a partition of objects. Another clustering approach is
hierarchical clustering, which aims at finding a hierarchy of partitions, that is a sequence of nested partitions. The
result is a tree diagram, called a dendrogram. A framework formalizing hierarchical clustering as an Integer Linear
Programming problem has recently been proposed by Gilpin et al. [37]. Gilpin et al. also propose in [38] a framework
based on SAT for hierarchical constrained clustering with different types of user-constraints.

Another clustering setting is correlation clustering, which is based on a similarity graph between objects, and
which aims at finding a partition that agrees as much as possible with the similarities. Berg et al. present in [39]
a MaxSAT framework for constrained correlation clustering. In this framework, hard clauses are used to ensure a
well-defined clustering and soft clauses are used to encode the cost function.

In this paper, we investigate the use of Constraint Programming for constrained clustering. Constraint Program-
ming has already been shown to be a promising approach for Data Mining through various tasks, such as itemset
mining [40, 41, 42, 43, 44], skypattern mining [45] or decision tree construction [46].

4. New CP Model for Constrained Clustering

We are given a collection of n points and a dissimilarity measure between pairs of points i, j, denoted by d(i, j).
Without loss of generality, let us suppose that points are indexed and named by their index (1 represents the first
point). The model aims at finding a partition into k classes satisfying a set of user constraints and optimizing a given
criterion.

The model we propose is composed of a set of CP constraints. They are used to model partition requirements, the
optimization criterion and different kinds of user constraints. Thus, they can be separated into three groups:

• the CP constraints expressing that the result must be a partition,

• the CP constraints expressing the user constraints,

• the CP constraints expressing the criterion to be optimized. Please note that when no optimization criterion is
given, the CP solver searches for all the partitions satisfying all the constraints.

In a previous work [3], we have presented a CP model for this task. This model was based on a two-level
representation: a set of variables for the assignment of a representative to each class and a set of variables for the
assignment of a representative to each point. Choosing such a representation requires the number of classes k to be
fixed beforehand, since each representative is modeled by a CP variable. In this paper, we introduce a new CP model,
which is based only on a set of variables for the assignment of a number (or index) of class to each point. As a
result, the number of classes k can be only bounded by kmin and kmax, where kmin and kmax are given by the user. In
the following, we present the two models to ease the comparison. In both models, the CP constraints expressing the
user constraints are similar but those that express partition requirements and optimization criteria are different. All
the optimization criteria in the new model are expressed by new global constraints with a filtering algorithm. The
differences between the two models are significant, since the new model has much less variables and constraints,
while being more efficient than the previous model. Table 1 summarizes the differences between the two models.

4.1. Variables
In the first model, for each cluster c ∈ [1, k], the point with the smallest index is considered as the representative

point of the cluster3. An integer variable Ic is introduced, its value is the index of the representative point of cluster

3It allows to have a single representation of a cluster. It must not be confused with the notion of representative in the medoid approach.
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c; the domain of Ic is therefore the set of integers [1, n]. Let I be the array [I1, . . . , Ik]. Assigning a point to a cluster
becomes assigning the point to the representative of the cluster. Therefore, for each point i ∈ [1, n], an integer variable
Gi ∈ [1, n] is introduced: Gi is the representative point of the cluster which contains the point i.

Example 4.1. Assume that we have 7 points o1, . . . , o7 and 2 clusters, the first one composed of o1, o2, o4 and the
second one composed of the remaining points. The points are denoted by their index (o1 is denoted by 1, o2 by 2
and so on). Then I1 = 1 and I2 = 3 (since 1 is the smallest index among {1, 2, 4} and 3 is the smallest index among
{3, 5, 6, 7}), G1 = G2 = G4 = 1 (since 1 is the representative of the first cluster) and G3 = G5 = G6 = G7 = 3 (since 3
is the representative of the second cluster).

In the new model, clusters are identified by their index, which varies from 1 to k for a partition into k clusters. To
represent the assignment of points to clusters, we use integer variables G1, . . . ,Gn whose domain is the set of integers
[1, kmax]. An assignment Gi = c means that the point i is put into the cluster number c.

The domains of the variables Gi in the two models are different, but the meaning of these variables is identical:
they represent the assignment of points to clusters. Let G denote the array [G1, . . . ,Gn].

To represent each optimization criterion, in both models, a float value variable is introduced. It is named D for the
diameter criterion, S for the split criterion and V for the WCSD criterion. Their domains are Dom(D) = Dom(S ) =

[mini, j(d(i, j)),maxi, j(d(i, j))] and Dom(V) = [0,
∑

i< j d(i, j)].

4.2. Partition Constraints
4.2.1. First model

To express that the result must be a partition, we put the following constraints:

• Each representative belongs to its cluster: for each c ∈ [1, k], we put GIc = Ic. This constraint is represented
by the CP constraint element(G, Ic, Ic). The constraint element(A, I,V) with A an array of variables and I,V
variables, sets the relation A[I] = V .

• Each point is assigned to a representative: for each i ∈ [1, n], we need
∨

c∈[1,k](Gi = Ic). This relation can be
expressed by #{c | Ic = Gi} = 1, which is represented by a CP constraint exactly(1,I,Gi). This constraint sets
the relation requiring that the value of Gi must appear exactly once in the array I.

• The representative of a cluster is the point which has the minimal index in the cluster; in other words, the index
i of a point is greater or equal to the index of its representative given by Gi: for each i ∈ [1, n], we put Gi ≤ i.

A set of clusters could be differently represented, depending on the order of clusters. For instance, in Example 4.1,
we could have chosen I1 = 3 and I2 = 1, thus leading to another representation of the same set of clusters. To avoid
this symmetry, the following constraints are added:

• The representatives are sorted in an increasing order: ∀c < c′ ∈ [1, k], Ic < Ic′ .

• The representative of the first cluster is the first point: I1 = 1.

4.2.2. Second model
In this model, clusters are identified by their number (index), and each variable Gi gives the index of the cluster

that contains point i. A complete assignment of the variables in G represents a partition. However, a partition can be
represented by different complete assignments of G. For instance, given a complete assignment of G, if we make a
permutation where all the variables Gi that have the value c1 take the value c2 and at the same time, all the variables
G j having the value c2 take the value c1, we get a new assignment for G, which still represents the same partition in
terms of classes. As a second example, when all the variables Gi with value c1 receive a value c3 that is not yet used
in an assignment of the other variables of G, this leads to a new assignment representing a symmetric solution. Such a
situation appears when building the clusters, a new created cluster can receive any value among the remaining cluster
numbers.

To break this kind of symmetries, the clusters are numbered such that the number 1 is the index of the first created
cluster and a new number c, with c > 1, is used if and only if the number c−1 has been already used. A straightforward
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way to express this condition is by using a constraint G1 = 1 and the constraints Gi ≤ max j∈[1,i−1](G j)+1, for i ∈ [2, n].
However, in order to have better interactions and propagations between these relations, a better way is to sum up these
relations into one global constraint with a good filtering algorithm. The constraint precede [47] helps to achieve this:

precede(G, [1, . . . , kmax]).

This constraint imposes that G1 = 1 and moreover, if Gi = c with 1 < c ≤ kmax, there must exist at least an index j < i
such that G j = c − 1.

The requirement to have at least kmin clusters means that all the numbers among 1 and kmin must be used in the
assignment of the variables Gi. When using the constraint precede, one only needs to require that at least one variable
Gi is equal to kmin. This is expressed by the relation #{i | Gi = kmin} ≥ 1, which can be represented by the CP
constraint:

atleast(1,G, kmin).

Since the domain of each variable Gi is [1, kmax], there will be at most kmax clusters. If the user needs exactly k clusters,
all he/she has to do is to set kmin = kmax = k.

4.3. User constraints
All popular user-defined constraints may be straightforwardly integrated. They are expressed the same way in

both models, since they rely on the use of the variables in G, which represent the assignment of points to clusters.

• Minimal size α of clusters: this means that each point must be in a cluster with at least α points (including
itself). For each i ∈ [1, n], the assigned value of the variable Gi must then appear at least α times in the array G,
i.e. #{ j | G j = Gi} ≥ α. Therefore, for each i ∈ [1, n], we put the constraint: atleast(α,G,Gi).

This constraint helps also to set a bound on the number of possible clusters. Indeed, the number of clusters
cannot exceed bn/αc. In the second model, this can be expressed by Gi ≤ bn/αc, for all i ∈ [1, n].

• Maximal size β of clusters: each number c ∈ [1, kmax] must appear in the array G at most β times (this is still
true for an unused value c ∈ [kmin + 1, kmax], since it appears 0 time), i.e. #{i | Gi = c} ≤ β. Therefore, for each
c ∈ [1, kmax], we put the constraint: atmost(β,G, c).

In the second model, this relation also entails: Gi ≥ dn/βe, for all i ∈ [1, n].

• Minimal split δ: a δ-constraint requires that the split between two clusters must be at least δ. Therefore for each
couple i < j ∈ [1, n] such that d(i, j) < δ, the constraint Gi = G j is put. The constraint S ≥ δ is also put.

• Maximal diameter γ: a diameter constraint requires that the diameter of each cluster must be at most γ. The
constraint D ≤ γ is put and for each couple i < j ∈ [1, n] such that d(i, j) > γ, we put: Gi , G j.

• Density constraint: a density constraint expresses that each point must have in its neighborhood of radius ε, at
least m points belonging to the same cluster as itself. So for each i ∈ [1, n], the set of variables corresponding to
points in its ε-neighborhood is computed Niε = {G j | d(i, j) ≤ ε} and this constraint is put: atleast(m,Niε ,Gi).

• Must-link constraint: a must-link constraint on two points i, j is expressed by: Gi = G j and D ≥ d(i, j).

• Cannot-link constraint: a cannot-link constraint on i, j is expressed by: Gi , G j and S ≤ d(i, j).

4.4. Optimization criteria
In the first model, we have proposed to model the optimization criterion by reified CP constraints.

• When minimizing the maximal diameter, since D represents the maximal diameter, any two points at a distance
greater than D must be in different clusters:

∀i < j ∈ [1, n], (d(i, j) > D)→ (Gi , G j).

Since D is a variable and its value is still unknown, these relations are expressed using reified constraints4.

4A reified constraint is a logical constraint of the form A → B or A ↔ B, where A and B are also constraints. The reified constraint A → B
means the constraint B must be satisfied if A is satisfied, and ¬A must be satisfied if ¬B is satisfied.
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• When maximizing the minimal split between clusters, any two points at a distance less than the minimal split S
must be in the same cluster:

∀i < j ∈ [1, n], (d(i, j) < S )→ (Gi = G j).

Since S is a variable, these relations are also expressed by reified constraints.

• When minimizing the Within-Cluster Sum of Dissimilarities (WCSD):

V =
∑

i, j∈[1,n]

(Gi = G j)d(i, j).

For this relation, we developed a global constraint wcsd(G,V, d) with a filtering algorithm.

When minimizing the diameter, in [3] we use heuristics provided by the algorithm FPF [6] to get a lower and an upper
bound on the diameter without user constraints, and only an upper bound in the presence of user-constraints. Such
bounds allow to reduce the number of reified constraints that are put in the model.

In the new model, for the diameter and split criteria, instead of using reified constraints, we develop two global
constraints diameter(G,D, d) and split(G, S , d), which exploit the measure d and which operate on the array G and on
the variable D or S . The filtering algorithms for the three constraints diameter(G,D, d), split(G, S , d) and wcsd(G,V, d)
are presented in Section 5.

If the user specifies an optimization criterion, an objective function is put in the model, which is:

• minimize D in case of minimizing the maximal diameter,

• maximize S in case of maximizing the minimal split,

• minimize V in case of minimizing the WCSD.

When an optimization criterion is specified, if there exist solutions that satisfy all the constraints, the solver finds an
optimal solution, which is a global optimum. If the user does not specify any optimization criterion, the solver finds
all the solutions satisfying all the constraints, if some exists.

4.5. Search strategy
Symmetry breaking for partition constraints in the two models is based on the indices of points, such as the

constraints Ic < Ic′ for all c < c′ in the first model or the constraint precede(G, [1, .., kmax]) in the second model. The
way points are indexed is therefore really important. Points are then reordered and reindexed, so that points that are
far from the others have a small index. In order to achieve this, we rely on the Furthest Point First algorithm [6]. This
algorithm starts by choosing a point, marks it as the first head, links all the points to it and iterates until all points are
marked. At each iteration, it chooses the point i that is the furthest to its head, marks it as a new head and links to i all
the points that are closer to i than to their head.

The search strategy in the first model is based on instantiating the variables in I before the variables in G. This
means that cluster representatives are identified before assigning points to clusters. Variables in I are chosen from I1
to Ik. Since the representative is the point with the minimal index in the cluster, values for instantiating each Ic are
chosen in an increasing order. The choice of variables and values in G depends on the criterion. For the diameter and
split criteria, a variable Gi with the smallest remaining domain is chosen. Recall that each value in j ∈ Dom(Gi) is
the index of a cluster representative. All values in Dom(Gi) are examined and the value j which corresponds to the
smallest value d(i, j) is chosen and two alternatives are created Gi = j and Gi , j.

In the new model, the search strategy is based on the choice of variables and values in G, and depends also on
the criterion. For the diameter and split criteria, at each branching point, a variable Gi with the smallest remaining
domain is chosen. Recall that each value c ∈ Dom(Gi) is the number of a cluster. All values in Dom(Gi) are examined
and the number of the closest cluster to i is chosen. The distance between a point i and a cluster number c is defined
as the maximal distance d(i, j) where G j is already instantiated to c. If the cluster number c is empty (there is no point
j such that G j = c), the distance between i and the cluster c is set to zero. This means that the assignment of a point
to a new cluster is favored if there are unused cluster numbers. Moreover, the smallest remaining number is chosen.
The closest cluster c to the point i is chosen and two alternatives are created Gi = c and Gi , c.
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First model Second model
V

ar
.

I = [I1, . . . , Ik], Dom(Ic) = [1, n]
G = [G1, . . . ,Gn], Dom(Gi) = [1, n] G = [G1, . . . ,Gn], Dom(Gi) = [1, kmax]

D (diameter), S (split), V (WCSD)

Pa
rt

iti
on

∀c ∈ [1, k], element(G, Ic, Ic) precede(G, [1, . . . , kmax])
∀i ∈ [1, n], exactly(1,I,Gi) atleast(1,G, kmin)

∀i ∈ [1, n], Gi ≤ i
∀c < c′ ∈ [1, k], Ic ≤ Ic′

I1 = 1

U
se

r-
co

ns
tr

ai
nt

s Minimal size α of clusters: ∀i ∈ [1, n], atleast(α,G,Gi)
Maximal size β of clusters: ∀c ∈ [1, kmax], atmost(β,G, c)
Minimal split δ: S ≥ δ, Gi = G j, for all i < j st. d(i, j) < δ
Maximal diameter γ: D ≤ γ, Gi , G j for all i < j st. d(i, j) > γ
Density constraint: ∀i ∈ [1, n], atleast(m,Niε ,Gi)
Must-link constraint: Gi = G j, D ≥ d(i, j)
Cannot-link constraint: Gi , G j, S ≤ d(i, j)

O
pt

.C
ri

t. WCSD criterion: wcsd(G,V, d)
Diameter criterion:

∀i < j ∈ [1, n], d(i, j) > D→ (Gi , G j) diameter(G,D, d)
Split criterion:

∀i < j ∈ [1, n], d(i, j) < S → (Gi = G j) split(G, S , d)

Table 1: Comparison between the two models.

Concerning the WCSD criterion, a mixed strategy is used in both models. In order to have a good upper bound
for the variable V , a greedy search is used to quickly find a solution. At this step, the chosen variable Gi and value
c are those such that the assignment Gi = c increases V as little as possible. The first solution found is in general
quite good. After finding the first solution, the strategy changes to a “first-fail”, which tends to detect failures quickly.
In this strategy, a value sic for each point i and each cluster c is defined as the sum of dissimilarities between i and
all points j already assigned to the cluster c. At each branching point, for all points i with Gi uninstantiated, the
minimal value si = minc∈Dom(Gi) sic is computed. The variable Gi with the smallest value si is then chosen and the
value c = arg min sic is chosen.

5. Filtering Algorithms for Optimization Criteria

For each optimization criterion, we have developed a filtering algorithm for the global constraint, which links
the variables G representing a partition to the variable representing the objective function (D, S or V). This kind of
global constraints is also called optimization constraint [18]. When a solution is found, its corresponding objective
value is computed and a constraint expressing that new solutions must have a better value than this one is added. This
constraint sets a new upper bound for D or V , which have to be minimized, or a new lower bound for S , which has
to be maximized. By reasoning globally on the objective variable and on the variables representing a partition, more
interactions between the domains of these variables can be captured and the search subspaces can be pruned before
instantiating all the variables.

5.1. Diameter and Split Criteria

To represent the relations between points and the diameter or the split, we develop filtering algorithms for two
global constraints diameter(G,D, d) and split(G, S , d), which exploit the dissimilarity measure d between any two
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points and which operate on the array G and the variable D or S . The constraint diameter(G,D, d) ensures that D is
the maximal diameter of the clusters formed by the variables G1, . . . ,Gn. This constraint ensures:

∀i < j ∈ [1, n], D < d(i, j) → Gi , G j. (1)

This kind of relation can be realized by reified constraints, which were indeed used in our previous model [3]. How-
ever, a reified constraint is needed for each couple i < j, which implies that the number of reified constraints would
be quadratic with respect to the number of points. By developing the constraint diameter(G,D, d), we maintain all
these relations in one constraint. The filtering algorithm is presented in Algorithm 1. In this algorithm, Dom(D) is
represented by [D.lb,D.ub), where D.lb is the lower bound, which initially can be the minimal dissimilarity between
two points, and D.ub is the upper bound, which can be either the maximal dissimilarity between two points, or the
value of D in the previous solution found. The bound D.ub is strict since in branch-and-bound search the next solution
must have D value strictly smaller than the previous one. The relation (1) is useful when the following cases happen.

• The upper bound D.ub has been changed (e.g. by a new found solution or by a diameter constraint). In this
case, for each couple i, j, if D.ub ≤ d(i, j), we can conclude D < d(i, j) and by (1) we can infer Gi , G j.
However, the relation Gi , G j is useful to filter the domain of Gi (or the domain of G j) only if the variable G j

(or Gi, resp.) has been instantiated. Therefore, Algorithm 1 uses a stack to remember the variables Gi that are
instantiated (lines 2–4) and exploits them to filter (line 9). The lower bound D.lb can possibly be revised. (line
10).

• Some variables Gi have been instantiated. In this case, for each couple i, j such that Gi and G j are instantiated
and have the same value, we infer D ≥ d(i, j) and can revise D.lb. The stack remembers then the variables Gi

which have just been instantiated (lines 5–6). This can lead to the revision of the lower bound D.lb (line 10).

Let us notice that as soon as the domain of one variable becomes empty, a failure case is detected by the solver.
The worst case complexity is O(n2). This algorithm is awaken when the upper bound of D is modified or a variable
Gi is instantiated. However, because of its complexity, it is scheduled to be effective after other constraints whose
propagators are of lower complexity, as for instance constraints representing must-link or cannot-link constraints.

The constraint split(G, S , d), on the other hand, maintains that S is the minimal split between the clusters formed
by the variables G1, . . . ,Gn. It ensures that:

∀i < j ∈ [1, n], S > d(i, j) → Gi = G j. (2)

The filtering algorithm is presented in Algorithm 2, where Dom(S ) = (S .lb, S .ub]. The lower bound S .lb is either the
minimal dissimilarity between two objects or the value of S in the previous solution found, since S is to be maximized.
In the same manner as for the constraint diameter(G,D, d), this algorithm is invoked if the lower bound S .lb has been
changed or some variables in G have been instantiated. In this algorithm, if S .lb has been changed, for each couple
i, j, if S .lb ≥ d(i, j), by (2) we can infer Gi = G j, which is propagated by enforcing Dom(Gi) = Dom(G j). Otherwise,
if some variables in G have been instantiated, if Gi , G j by (2) we infer S ≤ d(i, j), so the upper bound of S can be
changed. The worst case complexity is O(n2).

5.2. Within-Cluster Sum of Dissimilarities Criterion
We have developed a filtering algorithm for a new global optimization constraint wcsd(G,V, d), which links the

variable V , the array of variablesG and which exploits the dissimilarity measure d. This constraint ensures the relation:

V =
∑

1≤i< j≤n

(Gi =G j)d(i, j). (3)

where Gi = G j is 1 if Gi and G j have the same value and 0 otherwise. The filtering algorithm used in the first model as
well as motivations and proofs are presented in [48]. However, in [48] the algorithm is designed for the clustering task
with exactly k clusters, as the case considered in the first model. We present below a generalization of the algorithm
for clustering tasks where the number of clusters is only bounded, as considered in the second model.

Let us assume that we have a partial assignment of variables in G. Let K = {i ∈ [1, n] | Gi is assigned} and
U = {i ∈ [1, n] | Gi is unassigned}. We use the computation of a lower bound proposed in [49], which takes into
account the unassigned variables. The sum defining V can be split into three parts V = V1 + V2 + V3, where:
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Algorithm 1: Filtering for constraint diameter(G,D, d)

stack ← ∅;1

if D.ub has been changed then2

for i← 1 to n where Gi is instantiated do3

stack ← stack ∪ {i};4

else foreach i that Gi has just been instantiated do5

stack ← stack ∪ {i};6

foreach i ∈ stack do7

for j← 1 to n do8

if d(i, j) ≥ D.ub then delete Gi from Dom(G j);9

if G j is instantiated ∧ Gi = G j then D.lb← max(D.lb, d(i, j));10

Algorithm 2: Filtering for constraint split(G, S , d)

stack ← ∅;1

if S.lb has been changed then stack ← {1, . . . , n};2

else foreach i that Dom(Gi) has just been changed do3

stack ← stack ∪ {i};4

foreach i ∈ stack do5

for j← 1 to n do6

if d(i, j) ≤ S .lb then7

Dom(Gi)← Dom(Gi) ∩ Dom(G j);8

Dom(G j)← Dom(Gi);9

if Gi and G j are instantiated ∧ Gi , G j then S .ub← min(S .ub, d(i, j));10
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• V1 is the sum of dissimilarities between the assigned points:

V1 =
∑

i, j∈K,i< j

(Gi =G j)d(i, j)

• V2 is the sum of dissimilarities between the unassigned points and the assigned points:

V2 =
∑

i∈U, j∈K

(Gi =G j)d(i, j)

• V3 is the sum of dissimilarities between the unassigned points:

V3 =
∑

i, j∈U,i< j

(Gi =G j)d(i, j)

Since the set K is already known, the exact value of V1 can be computed. Since the points of U have not been
assigned to a cluster, the value of V2 is unknown. However, a lower bound of V2, denoted by V2.lb, can be computed by
the sum of the minimal contribution of all unassigned points. For each unassigned point i ∈ U, each value c ∈ Dom(Gi)
represents an index of cluster to which point i can be assigned to. If point i is assigned to the cluster number c, it will
contribute to that cluster the sum of dissimilarities between point i and all the assigned points which are in cluster c,
i.e. the sum of dissimilarities d(i, j) for all j ∈ K such that G j = c. The minimal contribution v2i of the point i is the
minimal added amount when considering all values in Dom(Gi), with respect to the assigned points:

v2i = min
c∈Dom(Gi)

(
∑

j∈K,G j=c

d(i, j)).

A lower bound V2.lb of V2 can be computed by the sum of v2i, for all i ∈ U:

V2.lb =
∑
i∈U

v2i.

The exact value of V3 is unknown too and we use a heuristic to compute a lower bound of V3. We recall that V3 is
the sum of all d(i, j) such that i, j ∈ U and i and j are in the same cluster. Let p be the cardinality of U and let k be
the cardinality of the union ∪i∈U Dom(Gi). Each value of ∪i∈U Dom(Gi) is the index of a possible cluster to which the
points in U can be assigned. The number k is then the maximal number of clusters to which the points in U can be
assigned. We can see that the minimal number of terms d(i, j) in the sum V3 is the minimal number of within-cluster
pairwise connections5, while considering all partitions of p points into at most k clusters.

Let m be the quotient of the division of p by k and m′ the remainder. Let f (p, k) = (km2 + 2mm′ − km)/2. It is
proved in [48] that the total number of within-cluster pairwise connections for all clusters is greater or equal to f (p, k).
The equality is reached when m′ clusters have m + 1 elements and k −m′ clusters have m elements. Therefore, for the
set U of unassigned points, if we order increasingly the constants d(i, j) for all i < j ∈ U, a lower bound V3, denoted
by V3.lb, is then computed by the sum of the f (p, k) first constants in this order.

Example 5.1. Let us consider the case given in Figure 6 with 14 points, which have to be grouped into 2 clusters.
Assume that 7 points are grouped and 7 are not. The exact value of V1 is computed by the sum of solid black lines.
The lower bound V2.lb is the sum of dash lines for each unassigned points. With 7 unassigned points, we have
p = 7, k = 2,m = 3 and m′ = 1, the minimal number of connections is f (7, 2) = 9. The lower bound V3.lb the sum
of dotted lines. Theses lines are the 9 smallest lines that connect two unassigned points. The lower bound V3.lb is
heuristic since these lines do not correspond to any case where the 7 unassigned points are grouped into 2 groups.

5A cluster can be seen as a clique and the number of pairwise connections is the number of edges in the clique.
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Figure 6: Example of V.lb = V1 + V2.lb + V3.lb

Assume that the domain of variable V is [V.lb,V.ub) where V.lb is the lower bound, which can initially be 0, and
V.ub is the upper bound, which can be either +∞ or the value of V in the previous solution found. The upper bound
V.ub is strict since in a branch-and-bound search the next solution must be better than the previous solution found.
Given a partial assignment of variables in G, a new lower bound of variable V is computed by:

V.lb = max(V.lb, V1 + V2.lb + V3.lb).

We use this lower bound in the filtering algorithm for wcsd(G,V, d). The algorithm is presented in Algorithm 3. The
lower bound V.lb is used for two purposes:

• Detecting failure during the branch-and-bound search. A failure happens when V.lb ≥ V.ub, which means that
the domain of V becomes empty.

• Filtering inconsistent values of unassigned variables. For each unassigned variable Gi, for each value c ∈
Dom(Gi), under the assumption that Gi = c, we propose to revise the lower bound in a constant time. If the
revised value is greater or equal than the upper bound V.ub then c is inconsistent and is removed from Dom(Gi).

Since the constants d(i, j) (i, j ∈ U, i < j) must be ordered increasingly for the computation of V3.lb, they are
ordered once in the array ord, and at the same time the arrays px and py are constructed. For each value pos, ord[pos]
gives the value d(i, j) in this order at position pos, and px[pos] (or py[pos]) gives the index i (or j, respectively) of
the constant. The arrays ord, px and py are given in input of Algorithm 3. This algorithm computes arrays add and
m, where add[i, c] is the added amount if i is assigned to cluster number c (add[i, c] =

∑
j∈K,G j=c d(i, j)) and m[i] is the

minimal added amount while considering all possible assignments for i (m[i] = minc∈Dom(Gi) add[i, c]).
Lines 1 to 25 computes the lower bound for V , based on a partial assignment of variables in G. Lines 26 to

28 filter the domain of the uninstantiated variables Gi as follows. For each uninstantiated variable Gi, for each
value c ∈ Dom(Gi), in case of assignment of i into cluster number c, a new lower bound for V.lb is revised into
V ′.lb = V ′1 + V ′2.lb + V ′3.lb, where:

• V ′1 = V1 + add[i, c] because point i is supposed to be assigned to cluster c, the sum of dissimilarities between
instantiated points is increased by add[i, c].

• V ′2 = V2.lb − m[i] because point i is no more unassigned, the contribution of point i in the computation of V2.lb
must be removed.

• V ′3.lb is the sum of the first f (|U \ {i}|, k) elements that are related to U \ {i} in the increasingly ordered array
ord. In order to revise this bound in a constant time, we actually use V4 instead of V ′3.lb. Here, V4 is the sum of
the first f (|U | − 1, k) = f (p − 1, k) elements of ord. These elements are related to U, it this therefore possible
that some of them are related to i. It is evidence that V ′3.lb ≥ V4. The value V4 can be computed once and
independently from i and c (line 23).

The revised lower bound, in case of assignment of point i to cluster c is:

(V1 + add[i, c]) + (V2.lb − m[i]) + V ′3.lb
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Algorithm 3: Filtering algorithm for wcsd(G,V, d)
input : U: the set of unassigned variables in G;

ord: array in which all the dissimilarities d(i, j) (i, j ∈ U, i < j) are ordered increasingly
px, py: arrays giving the index i, j wrt. ord

output: compute a new lower bound of V and filter unassigned variables in G
V1 ← 0; V2.lb← 0; V3.lb← 0; V4 ← 0;1

for i← 1 to n where Gi is unassigned do2

for c← 1 to kmax do3

if c ∈ Dom(Gi) then add[i, c]← 0 else add[i, c]← +∞4

for i← 1 to n where Gi is assigned do5

c← val(Gi)6

for j← 1 to n do7

if G j is assigned and G j = c and i < j then V1 ← V1 + d(i, j)8

if G j is unassigned and c ∈ Dom(G j) then add[ j, c]← add[ j, c] + d(i, j)9

for i← 1 to n where Gi is unassigned do10

m[i]← +∞;11

foreach value c ∈ Dom(Gi) do12

if m[i] > add[i, c] then m[i]← add[i, c]13

V2.lb← V2.lb + m[i];14

p← card(U);15

k ← card(∪i∈U Dom(Gi));16

cpt ← 0; pos← 1;17

while cpt < f (p, k) do18

i← px[pos]; j← py[pos];19

if Gi is unassigned and G j is unassigned then20

cpt ← cpt + 1;21

V3.lb← V3.lb + ord[pos];22

if cpt ≤ f (p − 1, k) then V4 ← V4 + ord[pos]23

pos← pos + 1;24

V.lb← max(V.lb,V1 + V2.lb + V3.lb);25

for i← 1 to n where Gi is unassigned do26

foreach value c ∈ Dom(Gi) do27

if V.lb + add[i, c] − m[i] − V3.lb + V4 ≥ V.ub then delete c from Dom(Gi);28
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which is greater or equal to:
V.lb + add[i, c] − m[i] − V3.lb + V4.

So if this last value is greater than the actual upper bound of V , point i cannot be assigned to cluster c. The value c is
therefore inconsistent and is removed from Dom(Gi). The complexity of this algorithm is O(n2 + nk) = O(n2 + nkmax),
since the domain of each Gi is of size at most kmax. Since kmax ≤ n, the complexity is then O(n2).

6. Bicriterion Split-Diameter Constrained Clustering

Our CP model represents a general and declarative framework for constrained clustering, where a user can choose
one among different optimization criteria and can integrate different kinds of user constraints. This flexibility offers
different ways of using our framework. We show in this section how it can be applied to handle bi-criterion constrained
clustering tasks.

Let us consider a constrained clustering task with a set C of user constraints, which is possibly empty. We aim
at computing the Pareto front for this constrained clustering task with the bi-criterion (min D,max S ). One approach
to achieve this is described in Algorithm 4; it is comparable to the ε-constraint approach presented in [50]. In this
algorithm, optimization steps with a single criterion are iterated, each time with a condition on the value of the other
criterion. The function Maximize Split(C) or Minimize Diameter(C) means the use of our model with the optimization
criterion of maximizing the split or minimizing the diameter, respectively, and with the set of constraints C. It returns
an optimal solution which satisfies all the constraints in C, if there exists one, or NULL otherwise. We prove that this
algorithm computes a complete and minimal set of Pareto optimal solutions.

Algorithm 4: Algorithm computing a complete and minimal set P = {∆S
1 , . . . ,∆

S
m} of Pareto optimal solutions

Input: C, a set of user constraints1

P ← ∅;2

i← 1;3

∆D
i ←Minimize Diameter(C);4

while ∆D
i , NULL do5

∆S
i ←Maximize Split(C ∪ {D ≤ D(∆D

i )}) ;6

P ← P ∪ {∆S
i };7

i← i + 1;8

∆D
i ←Minimize Diameter(C ∪ {S > S (∆S

i−1)}) ;9

Return P10

Proposition 6.1. Let ∆D
1 ,∆

S
1 , . . . ,∆

D
m,∆

S
m be the partitions visited by Algorithm 4. We have:

1. there is no partition ∆ satisfying C such that D(∆) < D(∆D
1 ),

2. if ∆D
i , NULL then ∆S

i , NULL,
3. for all 2 ≤ i ≤ m, S (∆S

i ) > S (∆S
i−1),

4. for all 1 ≤ i ≤ m, D(∆S
i ) = D(∆D

i ),
5. for all 2 ≤ i ≤ m, D(∆D

i ) > D(∆D
i−1),

6. for all 1 ≤ i < m, there is no partition ∆ satisfying C such that S (∆) ≥ S (∆S
i ) and D(∆) < D(∆D

i+1).
7. for all 1 ≤ i ≤ m, there is no partition ∆ satisfying C such that S (∆) > S (∆S

i ) and D(∆) = D(∆S
i ).

Proof.

1. Since ∆D
1 is a partition that minimizes the diameter among all the partitions satisfying the user constraints C

(line 4), there exists no partition ∆ satisfying C with D(∆) < D(∆D
1 ).

2. If ∆D
i , NULL, since ∆D

i satisfies the set C and the condition D ≤ D(∆D
i ), the set of partitions satisfying

C ∪ {D ≤ D(∆D
i )} is not empty. Moreover, this set is finite since the set of all partitions is finite. There exists at

least one partition satisfying these constraints and maximizing the split.
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Figure 7: The solutions found by Algorithm 4: (left) by two first steps, (right) by whole algorithm.

3. Since ∆D
i is among the partitions satisfying C ∪ {S > S (∆S

i−1)} (line 9), we have S (∆D
i ) > S (∆S

i−1). Since ∆D
i

satisfies C ∪ {D ≤ D(∆D
i )} and since among all the partitions satisfying C ∪ {D ≤ D(∆D

i )}, ∆S
i is the one that

maximizes the split (line 6), we have S (∆S
i ) ≥ S (∆D

i ). Therefore S (∆S
i ) > S (∆S

i−1).
4. To prove this we distinguish two cases.

Case i = 1: ∆S
1 satisfies C and D(∆D

1 ) is the minimal diameter of the partitions satisfying the user-constraints C,
therefore D(∆S

1 ) ≥ D(∆D
1 ). ∆S

1 belongs to the partitions satisfying D ≤ D(∆D
1 ). So D(∆S

1 ) = D(∆D
1 ).

Case i ≥ 2: Since ∆S
i is a partition satisfying the set C ∪ {D ≤ D(∆D

i )} (line 6), we have D(∆S
i ) ≤ D(∆D

i ). As
proven in the precedent item, S (∆S

i ) > S (∆S
i−1), so ∆S

i satisfies C∪ {S > S (∆S
i−1)}. Since ∆D

i is a partition which
minimizes the diameter among all the ones satisfying C ∪ {S > S (∆S

i−1)} (line 9), we have D(∆S
i ) ≥ D(∆D

i ).
Therefore D(∆S

i ) = D(∆D
i ).

5. For i = 2, the set of partitions satisfying C ∪ {S > S (∆S
1 )} is a subset of the set of partitions satisfying C.

Therefore D(∆D
2 ) ≥ D(∆D

1 ). For i ≥ 3, the set of partitions satisfying C ∪ {S > S (∆S
i−1)} is a subset of the set

of partitions satisfying C ∪ {S > S (∆S
i−2)}, since S (∆S

i−1) > S (∆S
i−2). Since ∆D

i and ∆D
i−1 are the partitions which

minimize the diameter among all the ones in these two respective sets, we have D(∆D
i ) ≥ D(∆D

i−1).
In all cases (2 ≤ i ≤ m), we have D(∆D

i ) ≥ D(∆D
i−1). If D(∆D

i ) = D(∆D
i−1), then S (∆S

i ) = S (∆S
i−1) (line 6:

the same constraints entail the same set of partitions and therefore the same maximal split) which contradicts
S (∆S

i ) > S (∆S
i−1). Therefore D(∆D

i ) > D(∆D
i−1).

6. Assume that there exists a partition ∆ that satisfies C and such that S (∆) ≥ S (∆S
i ) and D(∆) < D(∆D

i+1). Since
S (∆) ≥ S (∆S

i ) and ∆D
i+1 is a partition which minimizes the diameter among all those satisfy the condition

S > S (∆S
i ), we have D(∆) ≥ D(∆D

i+1). This contradicts the fact that D(∆) < D(∆D
i+1).

7. Assume that there exists a partition ∆ satisfying C such that S (∆) > S (∆S
i ) and D(∆) = D(∆S

i ). By point 4,
D(∆) = D(∆D

i ), so ∆ satisfies C ∪ {D ≤ D(∆D
i )}. By line 6, ∆S

i is a partition which maximizes the split among
those satisfying C ∪ {D ≤ D(∆D

i )}, so S (∆) ≤ S (∆S
i ). This contradicts the fact that S (∆) > S (∆S

i ). 2

Figure 7 illustrates the positions of the solutions found by Algorithm 4, according to Proposition 6.1. The left
image presents the two first steps. By point 1, there is no partition in the dark zone, except on the line D = D(∆D

1 ).
By point 7, there is no partition in the segment S > S (∆S

1 ) of the line D = D(∆D
1 ). By point 5 and line 9 of Algorithm

4, the partition ∆D
2 is above the dotted line (partitions in the white zone below the dotted line are dominated by ∆S

1 ).
By point 6, there is no partition in the grey zone, except on the line D = D(∆D

2 ). By point 7, there is no partition in
the segment S > S (∆S

2 ) of the line D = D(∆D
2 ). The right image presents the positions found by the whole algorithm.

There exists no partition in the grey zone. A solution in the white zone is dominated by a solution ∆S
i ∈ P.

Proposition 6.2. The set P = {∆S
1 , . . . ,∆

S
m} computed by Algorithm 4 is complete and minimal i.e.:

1. ∆S
i (1 ≤ i ≤ m) is a Pareto optimal solution,

2. for all Pareto optimal solution ∆ satisfying C, there exists i ∈ [1,m] such that D(∆) = D(∆S
i ) and S (∆) = S (∆S

i ).

The set {(D(∆), S (∆)) | ∆ ∈ P} is therefore the Pareto front.
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Proof. Algorithm 4 terminates since according to Proposition 6.1, S (∆S
i ) > S (∆S

i−1) and these values are discrete and
limited by the maximal dissimilarity of pairs of points.

1. We prove that for all i ∈ [1,m], there exists no partition ∆ satisfying C which dominates ∆S
i , i.e. such that

D(∆) ≤ D(∆S
i ) and S (∆) > S (∆S

i ), or D(∆) < D(∆S
i ) and S (∆) ≥ S (∆S

i ). Since D(∆S
i ) = D(∆D

i ), the partition
∆ must satisfy D(∆) ≤ D(∆D

i ) and S (∆) > S (∆S
i ), or D(∆) < D(∆D

i ) and S (∆) ≥ S (∆S
i ). The first case is

impossible since ∆S
i is a partition which maximizes the split among all those satisfying the condition D ≤

D(∆D
i ). For the second case, if i = 1 then ∆ does not exist according to point 1 of Proposition 6.1. If i > 1, since

S (∆S
i ) > S (∆S

i−1), the partition ∆ must satisfy D(∆) < D(∆D
i ) and S (∆) > S (∆S

i−1). This is impossible according
to point 6 of Proposition 6.1. Therefore each partition ∆S

i is Pareto optimal.
2. Let ∆ be any Pareto optimal solution, i.e. ∆ is not dominated, satisfying C.

We cannot have S (∆) > S (∆S
m), since ∆D

m+1 is null (Algorithm 4 terminates) and therefore there exists no
partitions satisfying C and S (∆) > S (∆S

m). Therefore S (∆) ≤ S (∆S
m). Since {S (∆S

i )} is strictly increasing,
therefore either S (∆) ≤ S (∆S

1 ) or there exists i ∈ [1,m − 1] such that S (∆S
i ) < S (∆) ≤ S (∆S

i+1).
Considering the case where S (∆) ≤ S (∆S

1 ). By point 1 of Proposition 6.1, D(∆D
1 ) ≤ D(∆) and by point 4,

D(∆D
1 ) = D(∆S

1 ), therefore D(∆S
1 ) ≤ D(∆). We have either (D(∆), S (∆)) = (D(∆S

1 ), S (∆S
1 )), or ∆S

1 dominates ∆.
Since ∆ is not dominated, we must have D(∆) = D(∆S

1 ) and S (∆) = S (∆S
1 ).

In the other case, where there exists i ∈ [1,m − 1] such that S (∆S
i ) < S (∆) ≤ S (∆S

i+1). By point 6 of Proposition
6.1, we have D(∆) ≥ D(∆D

i+1) and by point 4, D(∆) ≥ D(∆S
i+1). We then have S (∆S

i+1) ≥ S (∆) and D(∆S
i+1) ≤

D(∆), therefore either (D(∆), S (∆)) = (D(∆S
i+1), S (∆S

i+1)), or ∆S
i dominates ∆. Since ∆ is not dominated, we must

have D(∆) = D(∆S
i+1) and S (∆) = S (∆S

i+1). 2

Minimize Diameter (resp. Maximize Split) searches for a partition minimizing the diameter (resp. maximizing
the split) among the partitions satisfying the set of constraints given as argument. Let us recall that there may exist
several partitions optimizing a criterion but our model returns the first one found. Nevertheless it is later possible to
apply our model with no optimization criterion but with the constraint that the diameter of the partitions must be this
optimum and the algorithm will enumerate all the partitions satisfying this constraint. In this way, given an element
(Di, S i) in the Pareto front, our model without optimization criteria, but with the constraints C ∪ {D = Di, S = S i},
will enumerate all the partitions ∆ that satisfy C and such that D(∆) = Di and S (∆) = S i.

Multi-objective optimization in Constraint Programming in only one phase of search is proposed in [51]. The
idea is to realize a global constraint Pareto(Ob j1, . . . ,Ob jm,A), which keeps a set of non dominated solutions so far
computed A and which operates on the variables representing the objective functions Ob ji. This constraint reduces
the domain of a variable Ob ji if the domains of the other variables enter into the dominated zone of a solution in A.
A detailed description of this constraint as well as an extension with Large Neighborhood Search is proposed in [52].
This constraint Pareto can be introduced in our model. Nevertheless this approach for the moment is still much less
efficient than Algorithm 4 and therefore deeper studies, as for instance a study of the search strategy, are needed in
order to improve the efficiency.

7. Experiments

Our model is implemented in Gecode version 4.2.16. Gecode [19] is an open source Constraint Programming
library in C++ and is one of the current state-of-the-art CP solvers. Twelve databases taken from the repository UCI
[53] are used in our experiments. They vary on their size and their number of classes. Table 2 summarizes information
on these datasets, which are presented in increasing order of the number of objects. Since the problem we address
is finding an exact solution for distance-based clustering, the important factors are the number n of objects and the
number k of clusters. For the experiments, we have chosen a wide range of datasets with different values of n and k.
The experiments are performed on a 3.4GHz Intel Core i5 processor with 8G Ram running Ubuntu. All our programs
are available at http://cp4clustering.com.

6http://www.gecode.org
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Dataset # Objects # Classes
Iris 150 3
Wine 178 3
Glass 214 7
Ionosphere 351 2
User Knowledge 403 4
Breast Cancer 569 2
Synthetic Control 600 6
Vehicle 846 4
Yeast 1484 10
Multiple Features 2000 10
Image Segmentation 2000 7
Waveform 5000 3

Table 2: Properties of datasets

Dataset Dopt BaB GC CP1 CP2
Iris 2.58 1.4 1.8 < 0.1 < 0.1
Wine 458.13 2 2.3 0.3 < 0.1
Glass 4.97 8.1 42 0.9 0.2
IonoSphere 8.6 − 0.6 0.48 0.3
User Knowledge 1.17 − 3.7 75 0.2
Breast Cancer 2377.96 − 1.8 0.7 0.5
Synthetic Control 109.36 − − 56.1 1.6
Vehicle 264.83 − − 14.3 0.9
Yeast 0.67 − − 2389.9 5.2
Multi Features 12505.5 − − ∗ 10.4
Image Segmentation 436.4 − − 589.2 5.7
Waveform 15.6 − − ∗ 50.1

Table 3: Performance (measured in seconds) with the criterion of minimizing the maximal diameter

7.1. Constrained clustering with a single criterion
7.1.1. Minimizing the maximal diameter of clusters
Performance test. We compare the performance of our previous model (denoted by CP1) and our new model (denoted
by CP2), both relying on Gecode solver, with the branch-and-bound approach [4] (denoted by BaB) and the algorithm
based on graph coloring [5] (denoted by GC). The program BaB has been obtained from the author’s website 7.
Since no implementation of the algorithm GC was available, we coded it ourselves in C++ using a well-known
available graph coloring program [54]. We consider clustering without user-constraints since the other algorithms
cannot handle them and to our knowledge, there is no exact algorithm handling user-constraints with this criterion. In
the experiments, the timeout is set to 1 hour and the Euclidean distance is used to compute the dissimilarity between
objects. The number of classes k is set to the number of real classes given in Table 2 (in the new model kmin = kmax = k).

Table 3 shows the results of experiments. For each dataset we present the value Dopt (the optimal diameter) in the
second column and the run-time in seconds of each system. The symbol − is used when the system cannot complete
the search after 1 hour and the symbol ∗ is used to mark that the computer runs out of memory and cannot finish the
search. All the algorithms are exact and they find the same value for the optimum diameter.

It is clear that with these datasets, our new model (CP2) is the most efficient in all cases. All twelve datasets can
be solved by CP2 within one minute. Among the programs, BaB algorithm is the least efficient. It is not able to solve

7http://mailer.fsu.edu/~mbrusco/
8There was an error in [3] that expressed 8.6s for solving the dataset IonoSphere
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Figure 8: Comparison of #nodes in the search tree with different search strategies

datasets with more than 300 objects. The performance of GC is better than that of BaB but it decreases rapidly when
the number n of objects is over 500. BaB algorithm is based on the bounds of the maximal diameter to detect failures
during search, while GC algorithm considers all available distances in decreasing order to find the optimum diameter.
Our models, which exploits the benefits of Constraint Programming such as constraint propagation and appropriate
search strategies, are more efficient.

Analysis of search strategy. Although our two models are based on the Constraint Programming framework, there are
two main reasons that explain the significant differences in performance of the two models: the search strategy and
the dedicated filtering algorithm. For analyzing the influence of the search strategy, we use our new model (CP2) with
different search strategies: the strategy used in the previous model (CP1) and the one used in the new model (CP2).
Figure 8 presents the number of nodes in the search trees with these two strategies for the last six datasets given in
Table 2. It is clear that the new strategy is better, since the search trees are always smaller. The new search strategy
always finds quickly the first solution, the maximal diameter of which is close to the optimal diameter. As a result,
the solver can remove more unnecessary branches and there are less number of nodes in the search tree.

Analysis of the dedicated filtering algorithm. In CP1, for modeling the diameter criterion, the number of reified
constraints is a square function of the number n of points. Although our dedicated global constraint has a complexity
in the worst case of O(n2), it considers only necessary variables whereas in CP1, at each node, every reified constraints
is checked at least one time. In order to study the efficiency of the filtering algorithm, we test our new model (CP2)
but using reified constraints (as in CP1) to express the diameter criterion. Table 4 presents the performances obtained
when using reified constraints and when using the dedicated filtering algorithm. We can see that when using reified
constraints, the solver cannot find optimal solution with the datasets Wave Form and Multi Features. The reason is that
there are too many reified constraints and the computer runs out of memory. Table 4 shows that the filtering algorithm
boosts the performance and this becomes more and more significant with larger datasets.

Analysis of bounds on the number of clusters of the new model. We evaluate the influence of the bounds on the number
of clusters (k ∈ [kmin, kmax]) on the performance of CP2. In the first experiment, kmax is set to 10 and kmin varies from 2
to 10. The diameter criterion favors a high number of clusters, since the higher the number of clusters, the smaller the
value of the optimal diameter. Without user-constraints, the optimal solution with the diameter criterion has always a
number of clusters equal to kmax. For all the datasets, the total time in the search tree is constant when kmin changes.
It shows that the propagation of the constraint modeling the diameter criterion is effective. After finding and proving
the optimal solution with kmax clusters, the solver can conclude that it does not exist a better solution with less than
kmax clusters.

In the second experiment, kmin is set to 2 and kmax varies from 2 to 10. Figure 9 presents the results obtained with
the datasets Vehicle, Yeast, Multi Features and Image Segmentation. For each dataset, we report the number of nodes
in the search tree, when the bound kmax varies. In general, when kmax increases, more partitions have to be considered.
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reified constraints dedicated filtering algorithm
Iris < 0.1 < 0.1
Wine < 0.1 < 0.1
Glass 0.4 0.2
IonoSphere 0.3 0.3
User Knowledge 15.4 0.2
Breast Cancer 0.7 0.5
Synthetic Control 23.6 1.6
Vehicle 11.9 0.9
Yeast 574.2 5.2
Multi Features * 10.4
Image Segmentation 226.7 5.7
Waveform * 50.1

Table 4: Performance (measured in seconds) of CP2 with different modeling of diameter criterion

Figure 9: Analysis of bounds: kmin = 2, kmax = 2, 3, . . . , 10

However, we see an interesting trend in Figure 9: the number of nodes in the search tree does not always increase
as kmax increases. Indeed, since kmax is higher, the optimal maximum diameter is smaller, and the propagation of
the diameter constraint is more effective. It explains why in some cases, the computation time decreases when kmax

increases.

7.1.2. Maximizing the minimal split between clusters
Finding a partition maximizing the split between clusters is a polynomial problem. However, with user constraints

the problem becomes NP-Hard. To our knowledge, there is no exact algorithm for this criterion that supports any kind
of user constraints for a general value k ≥ 3. When optimizing the split without user constraints, when the number k
of classes is not fixed (kmin ≤ k ≤ kmax), the optimal solution has always a number of classes equal to kmin. However,
this is no longer true with user constraints, as for instance with a diameter constraint. We have experimented this
point with the new model by adding a diameter constraint. In order to set it, we have used the results given in Table 3
and set an upper bound on the diameter of each cluster to 1.5Dopt. The number of classes k is not fixed, it is bounded
between kmin = 2 and kmax equal to the actual number of classes given in Table 2. The results are given in Table 5. For
each dataset, we present the optimal split S opt, the number of classes of the solution ksol, the actual number of classes
kreal and the total execution time in seconds. Our model is able to solve almost all data sets, with the exception for the
dataset Waveform, which is the largest dataset.
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Dataset S opt ksol kreal Total time
Iris 0.53 3 3 < 0.1
Wine 53.33 3 3 < 0.1
Glass 1.78 7 7 1.7
Ionosphere 5.29 2 2 2.4
User Knowledge Modeling 0.32 4 4 11.5
Breast Cancer 421.99 2 2 0.7
Synthetic Control 45.16 5 6 17.4
Vehicle 27.06 4 4 29.5
Yeast 0.15 10 10 639.8
Multi Features 1107.07 10 10 267.9
Image Segmentation 228.70 7 7 51.3
Waveform − − − −

Table 5: Maximizing the minimal split between clusters with a diameter constraint

7.1.3. Minimizing the within-cluster sum of dissimilarities (WCSD)
Finding an exact solution for minimizing WCSD is difficult and we compare the performance of our new model in

Gecode solver with the Repetitive Branch-and-Bound Algorithm (RBBA) [4]. The program RBBA has been obtained
from the author’s website (http://mailer.fsu.edu/~mbrusco/). To our knowledge, it is the best exact algorithm
for the WCSD criterion. The dissimilarity between objects is measured by the squared Euclidean distance. Without
user constraints, both our model and the RBBA approach can only find the optimal solution with the Iris dataset. Our
model needs 4125s to complete the search whereas RBBA takes 3249s. RBBA solves the problem by repetitively
solving sub-problems: finding the optimal solution with k + 1, k + 2, . . . , n objects. By using the optimal value of
WCSD computed in the sub-problems, a better lower bound of WCSD can be computed, enabling RBBA to have
better performance. However, extending this algorithm to integrate user-constraints is difficult.

Our model can handle different kinds of user constraints and appropriate combinations of user constraints can boost
the performance. A set of 120 instance-level constraints has been generated from the dataset Iris. The constraints were
generated following the method described in [7]: two points are chosen randomly from the dataset, if they belong to the
same cluster in the real partition, a must-link constraint is generated, otherwise a cannot-link constraint is generated.
The first test is without user-constraints, the second one considers the first 30 constraints, the third one takes into
account the first 60 constraints and so on. Figure 10 (left) reports the total time needed to solve the dataset with these
user-constraints. When there are 30 constraints, the solver takes more computation time. The reason is that, with user-
constraints, the optimal value of WCSD is higher and the propagation of the WCSD constraint is weaker. However,
when more user-constraints are integrated, the propagation of must-link and cannot-link constraints is stronger and
enables to quickly instantiate variables in G. As a result, the solver takes only 94s for solving the problem with 60
constraints, and less than 10s when there are 90 or more constraints.

We have also evaluated the quality of the partitions found. For measuring the quality of a partition, we consider
the Adjusted Rand Index (ARI). It measures the similarity between two partitions, in this case, the real partition P of
the dataset and the partition P′ found by our model. It is defined by:

ARI =
2(ab − cd)

(a + d)(d + b) + (a + c)(c + b)

where a is the number of pairs of points that are in the same cluster in P and in P′, b is the number of pairs of points
that are in different clusters in P and in P′, c is the number of pairs of points that are in the same cluster in P, but
in different clusters in P′ and d is the number of pairs of points that are in different clusters in P, but in the same
cluster in P′. The results of this experiment are reported in Figure 10 (right). Since the constraints are generated from
the true partition of the dataset, the ARI value of the optimal partition improves when more are more constraints are
considered.
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Figure 10: WCSD with user-constraints on Iris: (left) computation time, (right) Adjusted Rand Index

Dataset #Sol bGC CP2
Iris 8 4.2 < 0.1
Wine 8 0.9 < 0.1
Glass 9 21.5 0.4
Ionosphere 6 1.8 2.6
User Knowledge 16 23.6 12.8
Breast Cancer 7 167.5 1.1
Synthetic Control 6 − 6.7
Vehicle 13 − 5.5
Yeast − − −

Multi Features 15 − 229.1
Image Segmentation 8 − 41.3
Waveform − − −

Table 6: Comparison of performance (measured in seconds) with bi-criterion Split-Diameter

7.2. Clustering with bi-criterion Split-Diameter
7.2.1. Performance test

For the split-diameter bi-criterion, we compare our new model (CP2) with the bi-criterion clustering algorithm
based on graph coloring [5] (denoted bGC). Since no implementation of the program was available, we have coded
it in C++. To our knowledge, this is the only exact algorithm for k ∈ [kmin, kmax]. In the experiments, the datasets in
Table 2 were used and the timeout was set to 1 hour. The number of classes k varies between 2 and the real number of
classes. Table 6 gives the results of our experiments. The second column (#Sol) gives the number of Pareto optimal
solutions found, or equivalently, the number of elements in the complete Pareto front. The following columns give the
run time of each approach in seconds. The two programs are exact and they find the same Pareto front. It is clear that
our model is the most efficient in most cases. It takes advantage of the efficient constraint propagation mechanism to
reduce the search space. As in the case of GC, the algorithm bGC is limited to datasets with less than 500 points.

7.2.2. Bi-criterion clustering with user-constraints
We have generated a set of 80 instance-level constraints from the dataset Iris, as described in Subsection 7.1.3

and we have applied Algorithm 4 with CP2 for solving the task of bi-criterion constrained clustering. The first test is
without user-constraints, the second one is with the first 20 user-constraints, the third one with the first 40 constraints
and so on. Figure 11 presents the Pareto front for the five cases, using from 0 to 80 user-constraints. As more
and more user-constraints are added, the number of feasible solutions decreases and as a result, the criterion space
changes significantly. Since we have generated user-constraints from the real partition, it is obvious that the point
(Dr, S r) corresponding to the real partition must be in the region delimited by each Pareto front. Therefore it must
be in the region delimited by the Pareto front with 80 constraints. We can see that without user-constraints, there
are many points in the Pareto front but all of them are very far from (Dr, S r). For that reason, it is useful to enable
user-constraints for the task of bi-criterion clustering. Moreover, given an element (Di, S i) in the Pareto front, our
model can be used to enumerate all Pareto optimal solutions that have the maximum diameter Di and the minimum

27



Figure 11: Bi-criterion constrained clustering with dataset Iris

split S i. For example, considering the Pareto front in the case of 80 instance-level constraints, it is composed of two
points, which correspond respectively to 8704 and 4352 partitions.

8. Conclusion

We have presented a new Constraint Programming model for Constrained Clustering. This model is a significantly
improved version of our previous model within the Constraint Programming framework [3]. It is based on a different
choice of variables and constraints. This model is modular in the sense that dedicated global constraints are developed
for different optimization criteria. It is more flexible since no fixed number of clusters needs to be specified; it is
sufficient to provide upper and lower bounds on the number of clusters. It is declarative and general since it allows to
choose among different optimization criteria and to integrate various kinds of user-constraints. We show that thanks
to its properties, it can be directly integrated in more general processes, as for instance for handling bi-criterion
constrained clustering. Experiments on classical datasets show that our model outperforms existing exact approaches
in most cases.

We do believe that working on search strategies and on constraint propagation enables to improve substantially
the efficiency of the model. We continue studying these aspects to make the model able to deal with larger datasets.
We also investigate the use of approximate search strategies, such as local search methods.

The use of our model for bi-criterion split-diameter constrained clustering can be generalized to other bi-criterion
problems, the only requirement is that each single criterion must be integrated inside the model.

From the Data Mining point of view, we consider integrating other optimization criteria, as for instance the within-
cluster sum of squares.
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