
Constrained Minimum Sum of Squares Clustering by
Constraint Programming

Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain

Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-45067, Orléans, France
{thi-bich-hanh.dao, khanh-chuong.duong,

christel.vrain}@univ-orleans.fr

Abstract. The Within-Cluster Sum of Squares (WCSS) is the most used crite-
rion in cluster analysis. Optimizing this criterion is proved to be NP-Hard and has
been studied by different communities. On the other hand, Constrained Cluster-
ing allowing to integrate previous user knowledge in the clustering process has
received much attention this last decade. As far as we know, there is a single
approach that aims at finding the optimal solution for the WCSS criterion and
that integrates different kinds of user constraints. This method is based on integer
linear programming and column generation. In this paper, we propose a global
optimization constraint for this criterion and develop a filtering algorithm. It is
integrated in our Constraint Programming general and declarative framework for
Constrained Clustering. Experiments on classic datasets show that our approach
outperforms the exact approach based on integer linear programming and column
generation.

1 Introduction

Cluster analysis is a Data Mining task that aims at partitioning a given set of objects
into homogeneous and/or well-separated subsets, called classes or clusters. It is usually
formulated as an optimization problem and different optimization criteria have been
defined [18]. One of the most used criteria is minimizing the Within-Cluster Sum of
Squares (WCSS) Euclidean distances from each object to the centroid of the cluster
to which it belongs. The well-known k-means algorithm as well as numerous heuristic
algorithms optimize it and find a local optimum [27]. Finding a global optimum for
this criterion is a NP-Hard problem and even finding a good lower bound is difficult
[1]. The best exact approach for clustering with this criterion is based on Integer Linear
Programming (ILP) and column generation [2].

On the other hand, since this last decade, user-defined constraints have been inte-
grated to clustering task to make it more accurate, leading to Constrained Clustering.
User constraints usually make the clustering task harder. The extension to user con-
straints is done either by adapting classic algorithms to handle constraints or by mod-
ifying distances between objects to take into account constraints [30, 4, 9]. Recently
an exact approach has been proposed, which aims at finding an optimal solution for
the WCSS criterion satisfying all the user constraints [3]. This approach extends the
method based on ILP and column generation [2]. It integrates different kinds of user
constraints but only handle the WCSS criterion.

Recently general and declarative frameworks for Data Mining have attracted more
and more attention from Constraint Programming (CP) and Data Mining communities
[11, 16, 28, 3]. In our previous work [7, 8] we have proposed a general framework based
on CP for Constrained Clustering. Different from classic algorithms that are designed
for one specific criterion or for some kinds of user constraints, the framework offers
in a unified setting a choice among different optimization criteria and a combination
of different kinds of user constraints. It allows to find a global optimal solution that
satisfies all the constraints if one exists. Classic heuristic algorithms can quickly find
a solution and can scale on very large datasets, however they do not guarantee the
satisfaction of all the constraints or the quality of the solution. A declarative and exact
approach allows a better understanding of the data, which is essential for small valuable
datasets that may take years to collect. In order to make the CP approach efficient, it is
important to invest in dedicated global constraints for the clustering tasks [8].

In this paper we propose a global optimization constraint wcss to represent the
WCSS criterion. We propose a method based on dynamic programming to compute
a lower bound and develop a filtering algorithm. The filtering algorithm filters not only
the objective variable, but also the decision variables. The constraint extends our frame-
work to the WCSS criterion. Experiments on classic datasets show that our approach
based on CP outperforms the state-of-the-art approach based on ILP and column gen-
eration that handles user constraints [3].

Outline. Section 2 gives preliminaries on constrained clustering and reviews related
work on existing approaches. Section 3 presents the framework based on CP and in-
troduces the constraint wcss. Section 4 presents our contributions: the computation of
a lower bound and the filtering algorithm for the constraint wcss. Section 5 is devoted
to experiments and comparisons of our approach with existing approaches. Section 6
discusses perspectives and concludes.

2 Preliminaries

2.1 Constrained Clustering

A clustering task aims at partitioning a given set of objects into clusters, in such a
way that the objects in the same cluster are similar, while being different from the
objects belonging to other clusters. These requirements are usually expressed by an
optimization criterion and the clustering task consists in finding a partition of objects
that optimizes it. Let us consider a dataset of n objects O and a dissimilarity measure
d(o, o′) between any two objects o, o′ ∈ O (d is defined by the user). A partition ∆ of
objects into k classes C1, . . . , Ck is such that: (1) ∀c ∈ [1, k]1, Cc 6= ∅, (2) ∪cCc = O
and (3) ∀c 6= c′, Cc ∩ Cc′ = ∅. The optimization criterion may be, among others:

– Maximizing the minimal split between clusters, where the minimal split of a parti-
tion ∆ is defined by: S(∆) = minc 6=c′∈[1,k] mino∈Cc,o′∈Cc′ d(o, o′).

– Minimizing the maximal diameter of clusters, which is defined by:
D(∆) = maxc∈[1,k] maxo,o′∈Cc

d(o, o′).

1 For integer value we use [1, k] to denote the set {1, .., k}.

– Minimizing the Within-Cluster Sum of Dissimilarities, which is defined by:

WCSD(∆) =
∑

c∈[1,k]

1
2

∑
o,o′∈Cc

d(o, o′)

– Minimizing the Within-Cluster Sum of Squares:

WCSS(∆) =
∑

c∈[1,k]

∑
o∈Cc

d(o,mc)

where for each c ∈ [1, k], mc is the mean (centroid) of the cluster Cc and d(o,mc)
is defined by the squared Euclidean distance ||o − mc||2. When the dissimilarity
between objects is defined by the squared Euclidean distance d(o, o′) = ||o− o′||2,
we have [12, 18]:

WCSS(∆) =
∑

c∈[1,k]

1
2

∑
o,o′∈Cc

d(o, o′)
|Cc|

All these criteria except the split criterion are NP-Hard (see e.g. [14] for the diameter
criterion, [1] for WCSS, or concerning WCSD, the weighted max-cut problem, which
is NP-Complete, is an instance with k = 2). Most of classic algorithms use heuristics
and search for a local optimum [17]. For instance the k-means algorithm finds a local
optimum for the WCSS criterion or FPF (Furthest Point First) [14] for the diameter
criterion. Different optima may exist, some may be closer to the one expected by the
user. In order to better model the task, user knowledge is integrated to clustering task. It
is usually expressed by constraints, leading to Constrained Clustering. User constraints
can be cluster-level, giving requirements on clusters, or instance-level, specifying re-
quirements on pairs of objects. The last kind, introduced in [29], is the most used. An
instance-level constraint on two objects can be a must-link or a cannot-link constraint,
which states that the objects must be or cannot be in the same cluster, respectively.

Different kinds of cluster-level constraints exist. The minimal (maximal) capac-
ity constraint requires that each cluster must have at least (at most, resp.) a given α
(β, resp.) objects: ∀c ∈ [1, k], |Cc| ≥ α (resp. ∀c ∈ [1, k], |Cc| ≤ β). A diam-
eter constraint sets an upper bound γ on the cluster diameter: ∀c ∈ [1, k],∀o, o′ ∈
Cc, d(o, o′) ≤ γ. A split constraint, named δ-constraint in [9], sets a lower bound
δ on the split: ∀c 6= c′ ∈ [1, k], ∀o ∈ Cc, o

′ ∈ Cc′ , d(o, o′) ≥ δ. A density con-
straint, which extends ε-constraints in [9], requires that each object o must have in its
neighborhood of radius ε at least m objects belonging to the same cluster as itself:
∀c ∈ [1, k],∀o ∈ Cc,∃o1, .., om ∈ Cc, oi 6= o ∧ d(o, oi) ≤ ε.

User-constraints can make the clustering task easier (e.g. must-link constraints) but
usually they make the task harder, for instance the split criterion that is polynomial
becomes NP-Hard with cannot-link constraints [10].

2.2 Related Work

We are interested in constrained clustering with the WCSS criterion. The clustering task
with this criterion is NP-Hard [1]. The popular k-means algorithm finds a local optimum

for this criterion without user constraints. This algorithm starts with a random partition
and repeats two steps until a stable state: (1) compute the centroid of the clusters, (2)
reassign the objects, where each one is assigned to the cluster whose centroid is the
closest to the object. The found solution thus depends on the initial random partition.
Numerous heuristic algorithms have been proposed for this criterion, see e.g. [27] for
a survey. Exact methods are much less numerous than heuristic. Some of them are
based on branch-and-bound [20, 6] or on dynamic programming [19, 23]. An algorithm
based on Integer Linear Programming (ILP) and column generation is proposed in [22].
This algorithm is improved in [2] and to our knowledge, it is the most efficient exact
approach. It can handle datasets up to 2300 objects with some heuristics [2], but it does
not handle user constraints.

The COP-kmeans algorithm [30] extends the k-means algorithm to handle must-
link and cannot-link constraints and tries to satisfy all of them. This algorithm changes
k-means in step (2): it tries to assign each object to the cluster whose centroid is the
closest, without violating the user constraints. If all the possible assignments violate a
user constraint, the algorithm stops. This is a greedy and fast algorithm without back-
track, but it can fail to find a solution that satisfies all the user constraints, even when
such a solution exists [10]. Another family of approaches tries to satisfy only most of
the user constraints. The CVQE (Constrained Vector Quantization Error) algorithm [9]
or an improved version LCVQE [24] extend the k-means algorithm to must-link and
cannot-link constraints by modifying the objective function.

Recently, a general framework, which minimizes the WCSS criterion and which
can handle different kinds of user constraints has been developed [3]. This framework
extends the approach [2] based on ILP and column generation. It allows to find a global
optimum and which satisfies all the user constraints. Due to the choice of variables in
the linear program, the framework is however specified for this very criterion and does
not handle other optimization criteria.

In our previous work, we have developed a general framework based on Constraint
Programming for Constrained Clustering [7, 8]. This framework offers a choice among
different optimization criteria (diameter, split or WCSD) and integrates all popular
kinds of user constraints. Moreover, the capacity of handling different optimization
criteria and different kinds of user constraints allows the framework to be used in bi-
criterion constrained clustering tasks [8]. In this paper we extend this framework to
integrate the WCSS criterion.

3 Constraint Programming Model

We are given a collection of n points and a dissimilarity measure between pairs of
points i, j, denoted by d(i, j). Without loss of generality, let us suppose that points are
indexed and named by their index (1 represents the first point). In [8] we have presented
a CP model for constrained clustering, which integrates the diameter, split and WCSD
criteria. We present an extension of this model to the WCSS criterion.

In this model the number of clusters k is not set, but only bounded by kmin and
kmax (kmin ≤ k ≤ kmax). The values kmin and kmax are set by the user. If the user
needs a known number k of clusters, all he has to do is to set kmin = kmax = k. The

clusters are identified by their index, which is a value from 1 to k for a partition of
k clusters. In order to represent the assignment of points into clusters, we use integer
value variables G1, . . . , Gn, each one having as domain the set of integers [1, kmax].
An assignment Gi = c expresses that point i is assigned to the cluster number c. Let G
be [G1, . . . , Gn]. To represent the WCSS criterion, we introduce a float value variable
V , with Dom(V) = [0,∞).

3.1 Constraints

Any complete assignment of the variables in G defines a partition of points into clusters.
In order to break symmetries between the partitions, we put the constraint precede(G,
[1, . . . , kmax]) [21], which states that G1 = 1 (the first point is in cluster 1) and ∀c ∈
[2, kmax], if there exists Gi = c with i ∈ [2, n], then there must exists j < i such that
Gj = c − 1. Since the domain of the variables Gi is [1, kmax], there are at most kmax

clusters. The fact that there are at least kmin clusters means that all the values from 1 to
kmin must appear in G. We only need to require that kmin must appear in G, since with
the use of the constraint precede, if kmin is taken, then kmin − 1, kmin − 2, . . . , 1 are
also taken. This means #{i | Gi = kmin} ≥ 1 and can be expressed by the constraint:
atleast(1,G, kmin).

Instance-level user constraints can be easily integrated within this model. A must-
link constraint on two points i, j is expressed by Gi = Gj and a cannot-link constraint
by Gi 6= Gj . All popular cluster-level constraints are also integrated. For instance, a
minimal capacity α constraint is expressed by the fact that each point must be in a
cluster with at least α points including itself. Therefore, for each i ∈ [1, n], the value
taken by Gi must appear at least α times in G, i.e. #{j | Gj = Gi} ≥ α. For each
i ∈ [1, n], we put: atleast(α,G, Gi). This requirement allows to infer an upper bound
on the number of clusters. Indeed, Gi ≤ bn/αc, for all i ∈ [1, n]. For other kinds of
user constraints, such as maximal capacity, diameter or density constraints, we refer the
reader to [8].

In order to express that V is the within-cluster sum of squares of the partition
formed by the assignment of variables in G, we develop a global optimization con-
straint wcss(G, V, d). The filtering algorithm for this constraint is presented in Section
4. The value of V is to be minimized.

3.2 Search Strategy

The branching is on the variables in G. A mixed strategy is used with a branch-and-
bound mechanism. A greedy search is used to find the first solution: at each branching,
a variable Gi and a value c ∈ Dom(Gi) such that the assignment Gi = c increases V
the least are chosen. The value of V at the first found solution gives an upper bound
of the domain of V . After finding the first solution, the search strategy changes. In
the new strategy, at each branching, for each unassigned variable Gi, for each value
c ∈ Dom(Gi) we compute the value aic, which is the added amount to V if point i is
assigned to cluster c. For each unassigned variable Gi, let ai = minc∈Dom(Gi) aic. The
value ai thus represents the minimal added amount to V when point i is assigned to a
cluster. Since each point must be assigned to a cluster, at each branching, the variableGi

with the greatest value ai is chosen, and for this variable, the value c with the smallest
value aic is chosen. Two branches are then created, corresponding to two cases where
Gi = c and Gi 6= c. This strategy tends to detect failure more quickly or in case of
success, to find a solution with the value of V as small as possible.

4 Filtering Algorithm for WCSS

We consider that the objects are in an Euclidean space and the dissimilarity measure is
defined by the squared Euclidean distance. The sum of dissimilarities of a cluster Cc is
defined by WCSD(Cc) = 1

2

∑
o,o′∈Cc

d(o, o′). The sum of squares of Cc is defined
by WCSS(Cc) = 1

|Cc|WCSD(Cc). The WCSS of a partition ∆ = {C1, . . . , Ck} is
WCSS(∆) =

∑
c∈[1,k]WCSS(Cc).

We introduce a new constraint wcss(G, V, d) and develop a filtering algorithm. This
constraint maintains the relation that the float value variable V is the sum of squares of
the clusters formed by the assignment of the decision variables of G, given a dissimilar-
ity measure d. Given a partial assignment of some variables in G, we develop a lower
bound computation for V and an algorithm to filter the domains of the variables. Since
the variable V represents the objective function, this constraint is a global optimization
constraint [13, 26]. The filtering algorithm filters not only the domain of the objective
variable V , but also the domain of decision variables in G.

A partial assignment of variables of G represents a case where some points have
been already assigned to a cluster and there are unassigned points. Let k = max{c |
c ∈

⋃
iDom(Gi)}. The value k is the greatest cluster index among those remaining in

all the domains Dom(Gi) and thus it is the greatest possible number of clusters in the
partition. Let C be the set of clusters C1, . . . , Ck. Some of these clusters can be empty,
they correspond to indexes that remain in some non-singleton domains Dom(Gi) but
not in a singleton domain. For each cluster Cc, let nc be the number of points already
assigned to Cc (nc ≥ 0) and let S1(Cc) be the sum of dissimilarities of all the assigned
points in Cc: S1(Cc) = 1

2

∑
i,j∈Cc

d(i, j). Let U be the set of unassigned points and let
q = |U |.

4.1 Lower Bound Computation

We compute a lower bound of V considering all the possibilities for assigning all the
points in U into the clusters C1, . . . , Ck. This is done in two steps:

1. For each m ∈ [0, q] and c ∈ [1, k], we compute a lower bound V (Cc,m) of
WCSS(Cc) considering all possible assignments of m points of U into Cc.

2. For each m ∈ [0, q] and c ∈ [2, k], we compute a lower bound V (C1 . . . Cc,m) of
WCSS({C1, .., Cc}) considering all the possibilities for assigning any m points
of U into the clusters C1, . . . , Cc.

Existing branch-and-bound approaches [20, 6] are also based on the computation of a
lower bound. However, these algorithms only make use of dissimilarities between the
unassigned points. In our lower bound computation, we exploit not only dissimilarities

between the unassigned points, but also the dissimilarities between unassigned points
and assigned points. The computation is achieved by Algorithm 1. The two steps are
detailed below.

Algorithm 1: Lower bound()
input : a partial assignment of G, a set U = {i | Gi unassigned}, q = |U |
output: a lower bound of the sum of squares V

1 foreach x ∈ U do
2 for c← 1 to k do
3 if c 6∈ Dom(Gx) then s2[x, c]←∞ ;
4 else s2[x, c]← 0;

5 foreach v ∈ [1, n] such that |Dom(Gv)| = 1 do
6 if val(Gv) ∈ Dom(Gx) then s2[x, val(Gv)] = s2[x, val(Gv)] + d(x, v);

7 sort u ∈ U in the increasing order of d(x, u)
8 s3[x, 0]← 0
9 for m← 1 to q do

10 s3[x,m]← s3[x,m− 1] + d(x, um)/2

11 for c← 1 to k do
12 for m← 0 to q do
13 foreach x ∈ U do
14 s[x] = s2(x, c) + s3(x,m)

15 sort the array s increasingly
16 S2(Cc,m)←

∑m

i=1
s[i]

17 if nc +m = 0 then V (Cc,m)← 0 ;
18 else
19 V (Cc,m)← (S1(Cc) + S2(Cc,m))/(nc +m)

20 for c← 2 to k do
21 V (C1..Cc, 0)← V (C1..Cc−1, 0) + V (Cc, 0)
22 for m← 1 to q do
23 V (C1..Cc,m)← mini∈[0,m](V (C1..Cc−1, i) + V (Cc,m− i))

24 return V (C1..Ck, q)

Assignment of any m points of U into a cluster Cc. If we choose a subset U ′ ⊆ U with
|U ′| = m and we assign the points of U ′ into the cluster Cc, the sum of squares of Cc

after the assignment will be:

V (Cc, U
′) =

S1(Cc) + S2(Cc, U
′)

nc +m

Here S1(Cc) is the sum of dissimilarities of the points already assigned in Cc and
S2(Cc, U

′) is the sum of dissimilarities related to points in U ′. The value of S1(Cc) is

known. If the set U ′ is known the value S2(Cc, U
′) can be computed exactly by:

S2(Cc, U
′) =

∑
u∈U ′,v∈Cc

d(u, v) +
1
2

∑
u,v∈U ′

d(u, v)

But S2(Cc, U
′) remains unknown while U ′ is not defined. However, for any subset U ′

of size m, we can compute a lower bound S2(Cc,m) as follows. Each point x ∈ U ,
in case of assignment to the cluster Cc together with other m − 1 points of U , will
contribute an amount s(x, c,m) = s2(x, c) + s3(x,m), where:

– s2(x, c) represents the sum of dissimilarities between x and the points already in
the cluster Cc. If c 6∈ Dom(Gx) then s2(x, c) = +∞, since x cannot be assigned
to Cc. Otherwise s2(x, c) =

∑
v∈Cc

d(x, v). This value s2(x, c) is 0 if the cluster
Cc is empty. It is computed by lines 2–6 in Algorithm 1.

– s3(x,m) represents a half of the sum of dissimilarities d(x, z), for all the m − 1
other points z. These points z can be any points in U , however, if we order all
the points u ∈ U in an increasing order on d(x, u) and we denote by ui the i-th
point in this order, we have a lower bound for s3(x,m) (lines 7–10 in Algorithm
1): s3(x,m) ≥ 1

2

∑m−1
i=1 d(x, ui).

A lower bound S2(Cc,m) is thus the sum of the m smallest contributions s(x, c,m)
(represented by s[x] in Algorithm 1, for fixed values c and m), for all points x ∈ U .
The lower bound V (Cc,m) is 0 if nc +m = 0 or otherwise is computed by:

V (Cc,m) =
S1(Cc) + S2(Cc,m)

nc +m
(1)

This is computed for all c ∈ [1, k] and m ∈ [0, q] (lines 11–19 in Algorithm 1).

1

2

3

4

5

6
7

9

10

11

12(A)
8

1

2

3

4

5

6
7

8

9

10

11

12(B)

1/2

1/2

Fig. 1. Example: (A) partial assignment, (B) dissimilarities used in S2(C3, 2)

For an example, let us consider the partial assignment given in Figure 1 (A) where
k = 3 and some points have been assigned into 3 clusters C1 (square), C2 (triangle) and
C3 (circle). The set of unassigned points U is {3, 4, 8, 9}. A lower bound V (C3, 2) for
the sum of squares ofC3 in case of assignment of any 2 points of U intoC3 is computed

by Formula (1), with nc = 3 and m = 2. In this formula, S1(C3) = d(10, 11) +
d(11, 12) + d(10, 12) and S2(C3, 2) is the sum of the 2 smallest contributions to C3

among those of all the unassigned points. They are the contributions of points 4 and 9.
Figure 1 (B) presents the dissimilarities used in the computation of S2(C3, 2). For the
contribution of point 4, we make use of one (= m−1) smallest dissimilarity from point
4 to the other unassigned points, which is d(4, 3). Idem for point 9, where d(9, 8) is
used. Let us note that the contribution of each point is computed separately, in order to
avoid combinatory cases. Therefore d(4, 9) is not used, even though points 4 and 9 are
assumed to be assigned to C3.

Assignment of anym points of U into c clusters C1, .., Cc. Any assignment ofm points
to c clusters is expressed by an assignment of some i points to the first c−1 clusters and
the remaining m − i points to the last cluster. Reasoning only on the number of points
to be assigned, we always have the following relation:

V (C1..Cc,m) ≥ min
i∈[0,m]

(V (C1..Cc−1, i) + V (Cc,m− i))

A lower bound V (C1..Cc,m) therefore can be defined by:

V (C1..Cc,m) = min
i∈[0,m]

(V (C1..Cc−1, i) + V (Cc,m− i)) (2)

This is computed by a dynamic program for all c ∈ [2, k] and m ∈ [0, q] (lines 20–23
in Algorithm 1). Let us notice that with (2), for all c ∈ [1, k] and m ∈ [0, q]:

V (C1..Cc,m) = min
m1+..+mc=m

(V (C1,m1) + · · ·+ V (Cc,mc)) (3)

Let us reconsider the example given in Figure 1. The value V (C1..C3, 4) computed by
(2) corresponds to the case V (C1..C2, 1) + V (C3, 3), i.e when one point is assigned to
the clustersC1, C2 and 3 points are assigned toC3. The value V (C1..C2, 1) corresponds
to the case V (C1, 0) + V (C2, 1). The value V (C2, 1) corresponds to the case where
point 4 is assigned to cluster C2 and V (C3, 3) to the case where points 4, 8 and 9 are
assigned to cluster C3. We note that in this lower bound, point 4 is considered twice
and point 3 is not considered.

Concerning the complexity, the complexity of the first loop (lines 1–10) is O(q(k+
n+ q log q+ q)) = O(q2 log q+ qn). The complexity of the second loop (lines 11–19)
is O(kq(q + q log q)) = O(kq2 log q) and the complexity of the last loop (lines 20–23)
is O(kq2). The complexity of Algorithm 1 is then O(kq2 log q+ qn). Let us notice that
in clustering tasks, the number of clusters k is usually constant or much smaller than n.

4.2 Filtering Algorithm

The filtering algorithm for the constraint wcss(G, V, d) is presented in Algorithm 2,
given a partial assignment of variables in G. The value V (C1..Ck, q) in Algorithm 1
represents a lower bound for the sum of squares V , for all possible assignments of all
the points in U into the clusters C1, . . . , Ck. Let [V.lb, V.ub) be the actual domain of V ,

where V.lb is the lower bound, which can be initially 0, and V.ub is the upper bound,
which can be either +∞ or the value of V in the previous solution. The upper bound is
strict since in a branch-and-bound search the next solution must be strictly better than
the previous solution. The lower bound V.lb is then set to max(V.lb, V (C1..Ck, q)). We
present below the filtering of unassigned decision variables in G.

For each value c ∈ [1, k], for each unassigned variable Gi, if c ∈ Dom(Gi), with
the assumption of assigning point i into the cluster Cc, we compute a new lower bound
of V . Let C ′c be the cluster Cc ∪ {i} and let C′ = {Cl | l 6= c} ∪ {C ′c}. A new lower
bound V ′ of V is the value V (C′, q − 1), since there still remain q − 1 points of U\{i}
to be assigned to the k clusters. According to (2):

V (C′, q − 1) = min
m∈[0,q−1]

(V (C′\{C ′c},m) + V (C ′c, q − 1−m))

For all m ∈ [0, q − 1], we revise the lower bounds V (C′\{C ′c},m) and V (C ′c,m) by
exploiting informations constructed by Algorithm 1. The revision will be detailed in
the remainder of this subsection. The new lower bound V ′ is computed by line 8 of
Algorithm 2. Therefore, since Dom(V) = [V.lb, V.ub), if V ′ ≥ V.ub, the variable
Gi cannot take the value c. The value c is then removed from Dom(Gi) (lines 9–
10). The complexity of Algorithm 2 is the complexity of computing the lower bound
O(kq2 log q + qn) plus the complexity of the loop (lines 2–10) O(kq2). The overall
complexity therefore is O(kq2 log q + qn).

Algorithm 2: Filtering of wcss(G, V, d)
input : a partial assignment of G, a set U = {i | Gi unassigned}, q = |U |

1 V.lb← max(V.lb,Lower bound())
2 for c← 1 to k do
3 for m← 0 to q − 1 do
4 V (C′\{C′c},m)← maxm′∈[0,q−m](V (C,m+m′)− V (Cc,m

′))

5 foreach i ∈ U such that c ∈ Dom(Gi) do
6 for m← 0 to q − 1 do
7 V (C′c,m)← ((nc +m)V (Cc,m) + s2(i, c) + s3(i,m))/(nc +m+ 1)

8 V ′ ← minm∈[0,q−1](V (C′\{C′c},m) + V (C′c, q − 1−m))
9 if V ′ ≥ V.ub then

10 remove c from Dom(Gi)

Computing V (C ′c,m). Let us recall that C ′c is the cluster Cc augmented by point i, and
V (C ′c,m) is the lower bound of the sum of squares of C ′c after adding any m points of
U\{i} into C ′c. According to (1):

V (C ′c,m) =
S1(C ′c) + S2(C ′c,m)

nc + 1 +m

We have S1(C ′c) = S1(Cc) + s2(i, c). The value of S2(C ′c,m) can be revised from
S2(Cc,m) by:

S2(C ′c,m) = S2(Cc,m) + s3(i,m)

According to (1), we have (line 7 of Algorithm 2):

V (C ′c,m) =
(nc +m)V (Cc,m) + s2(i, c) + s3(i,m)

nc +m+ 1

Computing V (C′\{C ′c},m). This value represents a lower bound of the sum of squares
for any assignment of m points in U\{i} into the clusters different from C ′c. According
to (3), for all q′ ∈ [m, q]:

V (C, q′) = min
m+m′=q′

(V (C\{Cc},m) + V (Cc,m
′))

so for all q′ ∈ [m, q] and with m+m′ = q′, we have:

V (C,m+m′) ≤ V (C\{Cc},m) + V (Cc,m
′)

which corresponds to:

V (C\{Cc},m) ≥ V (C,m+m′)− V (Cc,m
′)

Since m ≤ q′ ≤ q and m+m′ = q′, we have 0 ≤ m′ ≤ q −m. We then have:

V (C\{Cc},m) ≥ max
m′∈[0,q−m]

(V (C,m+m′)− V (Cc,m
′))

We also have:
V (C′\{C ′c},m) ≥ V (C\{Cc},m)

since C′\{C ′c} and C\{Cc} denote the same set of clusters, V (C′\{C ′c},m) is computed
for any m points of U\{i}, while V (C\{Cc},m) is computed for any m points of U .
Therefore we can exploit the columns computed by the dynamic program in Algorithm
1 to revise a new lower bound (line 4 in Algorithm 2):

V (C′\{C ′c},m) = max
m′∈[0,q−m]

(V (C,m+m′)− V (Cc,m
′))

5 Experiments

Our model is implemented with Gecode library version 4.2.72, which supports float
and integer variables. Experiments have been performed on a 3.0 GHz Core i7 In-
tel computer with 8 Gb memory under Ubuntu. All our programs are available at
http://cp4clustering.com. We have considered the datasets Iris, Soybean and
Wine from the UCI Machine Learning Repository3. The number of objects and the num-
ber of classes are respectively 150 and 3 for Iris, 47 and 4 for Soybean and 178 and 3

2 http://www.gecode.org
3 http://archive.ics.uci.edu/ml

for Wine dataset. We compare our model with the approach proposed in [3], based on
Integer Linear Programming and column generation and optimizing WCSS criterion
with user constraints. Our approach is also compared to COP-kmeans [30] that extends
k-means algorithm to integrate user constraints and to Repetitive Branch-and-Bound
Algorithm (RBBA) [5], without user constraints, since this algorithm is not able to han-
dle them.

In MiningZinc, a modeling language for constraint-based mining [15], it is shown
that clustering with the WCSS criterion can be modeled4. The model can be translated to
different backend solvers including Gecode. However, because of the intrinsic difficulty
of the WCSS criterion, this example model cannot handle 14 points randomly selected
from Iris dataset within 30 min, whereas our model takes 0.01s to solve them.

5.1 Optimizing WCSS in Presence of User Constraints

The most widespread constraints in clustering are must-link or cannot-link constraints,
since they can be derived from partial previous knowledge (e.g. cluster labels known
for a subset of objects). Therefore we choose these two kinds of constraints in the ex-
periments. To generate user constraints, pairs of objects are randomly drawn and either
a must-link or a cannot-link constraint is created depending on whether the objects be-
long to the same class or not. The process is repeated until the desired number for each
kind of constraints is reached. For each number of constraints, five different constraint
sets are generated for the tests. In each test, we compute the WCSS value, the Rand
index of the solution compared to the ground truth partition and the total run-time. The
Rand index [25] measures the similarity between two partitions, P and P ∗. It is defined
by RI = (a + b)/(a + b + c + d), where a and b are the number of pairs of points
for which P and P ∗ are in agreement (a is the number of pairs of points that are in the
same class in P and in P ∗, b is the number of pairs of points that are in different classes
in P and in P ∗), c and d are the number of pairs of points for which P and P ∗ disagree
(same class in P but different classes in P ∗ and vice versa). This index varies between
0 and 1 and the better the partitions are in agreement, the closer to 1. Since experiments
are performed on 5 sets of constraints, the mean value µ and the standard deviation σ
are computed for run-time and RI. A timeout is set to 30 min. A minus sign (-) in the
tables means that the timeout has been reached without completing the search. Since the
ground truth partition is used to generate user constraints, experiments are done with k
equal to the ground truth number of classes for each dataset.

Table 1 gives results for our model (CP) and for the approach based on ILP and
column generation (ILP) [3] for the Iris dataset with different numbers #c of must-
link constraints. For both the execution time and the Rand index, the mean value of the
five tests and the coefficient of variation (σ/µ) are reported. Since the two approaches
are exact, they find partitions having the same WCSS value. It can be noticed that must-
link constraints help to improve quality of the solution as well as to reduce the execution
time for this dataset. Our approach can find a global optimal without user constraints,
whereas ILP approach needs at least 100 must-link constraints to be able to prove the
optimality. With more than 100 must-link constraints, our approach always takes less

4 http://inductiveconstraints.eu/miningzinc/examples/kmeans.mzn

time to complete the search. Our approach is also more efficient to handle must-link

#c CP ILP RI
µ σ/µ µ σ/µ µ σ/µ

0 888.99 0.83 % - - 0.879 0 %
50 332.06 78.96 % - - 0.940 1.66 %

100 7.09 40.18 % 62 74.24 % 0.978 1.68 %
150 0.31 36.39 % 0.45 44.55 % 0.989 0.66 %
200 0.07 24.83 % 0.11 48.03 % 0.992 0.66 %
250 0.05 10.63 % 0.06 35.56 % 0.996 0.70 %
300 0.04 9.01 % 0.04 19.04 % 0.998 0.35 %

Table 1: Time (in seconds) and RI for Iris dataset with #c must-link constraints

and cannot-link constraints. Table 2 (left) reports mean execution time in seconds for
the five tests and the coefficient of variation σ/µ. In each case, the same number #c of
must-link and cannot-link constraints are added. We can see that when #c ≤ 75, our
approach can complete the search within the timeout and in the other cases, it performs
better than ILP. Concerning the Wine dataset, the two approaches cannot prove the
optimality of the solution in less than 30 min, when there are less than 150 must-link
constraints, as shown in Table 2 (right).

#c CP ILP
µ σ/µ µ σ/µ

25 969.33 51.98 % - -
50 43.85 46.67 % - -
75 4.97 150 % - -

100 0.41 49.8 % 107 72.35 %
125 0.09 52.07 % 4.4 95.85 %
150 0.06 22.6 % 0.8 50 %

#c CP ILP
150 6.84 12.98
200 0.11 0.32
250 0.08 0.11
300 0.08 0.06

Table 2: Time in seconds for Iris dataset with #c must-link and #c cannot-link con-
straints (left) and Wine dataset with #c must-link constraints (right)

Our CP approach makes better use of cannot-link constraints, as shown in Table 3.
This table reports the mean time in seconds and the percentage of tests for which each
system completes the search within the timeout. The execution time varies a lot, de-
pending on the constraints. If we consider the Iris database, Table 3 (left) shows that
our model is able to find an optimal solution and to prove it for roughly 60 % cases,
wheres ILP can solve no cases. If we consider the Wine dataset, Table 3 (right) shows
that when 100 must-link and 100 cannot-link constraints are added, CP can solve all the
cases, whereas ILP cannot solve them. When 125 must-link constraints and 125 cannot-

link constraints are added, both approaches can solve all the cases, but our approach is
less time-consuming.

#c CP ILP
µ solved µ solved

50 1146.86 20 % - 0 %
100 719.53 80 % - 0 %
150 404.77 60 % - 0 %
200 1130.33 40 % - 0 %
250 172.81 60 % - 0 %
300 743.64 60 % - 0 %

#c CP ILP
µ solved µ solved

100 10.32 100 % - 0 %
125 0.35 100 % 497.6 100 %
150 0.12 100 % 13.98 100 %

Table 3: Iris dataset with #c cannot-link constraints (left) and Wine dataset with #c
must-link and #c cannot-link constraints (right)

Experiments with the Soybean dataset lead to the same observations. With a number
of must-link constraints varying from 10 to 80, the mean run-times for both CP and ILP
approaches decrease from 0.3 s to 0.01 s. However, with different numbers of cannot-
link constraints, CP always outperforms ILP approach. For instance, the mean time is
5.19 s (CP) vs. 278.60 s (ILP) with 20 cannot-link constraints, or 2.5 s (CP) vs. 126 s
(ILP) with 80 cannot-link constraints.

5.2 Comparisons with COP-kmeans and RBBA

RBBA [5] is based on a repetitive branch-and-bound strategy and finds an exact solution
for WCSS. This algorithm takes 0.53 s to find and prove the optimal solution for the
Iris dataset and 35.56 s for the Wine dataset. But it does not handle user constraints.
Concerning the quality of the lower bound, when most of the points are unassigned, the
lower bound of RBBA is better than ours. However when more points are assigned to
the clusters, our lower bound can be better than the lower bound of RBBA.

On the other hand, COP-kmeans algorithm [30] extends k-means algorithm to must-
link and cannot-link constraints. This algorithm is based on a greedy strategy to find a
solution that satisfies all the constraints. When there are only must-link constraints,
COP-kmeans always finds a partition satisfying all the constraints, which is a local
optimum of WCSS. Nevertheless, when considering also cannot-link constraints, the
algorithm may fail to find a solution satisfying all the constraints, even when such a
solution exists.

We perform the same tests, but for each set of constraints, COP-kmeans is run 1000
times and we report the number of times COP-kmeans has been able to find a parti-
tion. Figure 2 (left) shows the percentage of successes when cannot-link constraints are
added. With the two datasets Iris and Wine, COP-kmeans fails to find a partition when
150 constraints are added. Our CP model always find a solution satisfying all the con-
straints. For Iris dataset, our model succeeds in proving the optimality for roughly 60 %
cases (Table 3 left).

Figure 2 (right) gives the results when #c must-link and #c cannot-link constraints
are added. For Wine dataset, COP-kmeans always fail to find a partition when #c = 75,
125 or 150. Our CP approach finds a solution satisfying all the constraints in all the
cases. It completes the search in all the cases for Iris dataset, as shown in Table 2 (left),
and in all the cases where #c ≥ 100 for Wine dataset, as shown in Table 3 (right).

Fig. 2. COP-kmeans with cannot-link (left), with #c must-link and #c cannot-link constraints
(right)

6 Conclusion

In this paper we address the well-known WCSS criterion in cluster analysis. We develop
a new global optimization constraint wcss and present a filtering algorithm, which fil-
ters not only the domain of the objective variable but also those of decision variables.
This constraint integrated to our CP framework [7, 8] extends it to model constrained
minimum sum of squares clustering tasks. Experiments on classic datasets show that
our framework outperforms the state-of-the-art best exact approach, which is based on
Integer Linear Programming and column generation [3].

Working on search strategies and on constraint propagation enables to improve sub-
stantially the efficiency of our CP model. We continue studying these aspects to make
the framework able to deal with larger datasets. We are working on exploiting user
constraints inside the filtering algorithm, either by using connected components or by
modifying the dissimilarities according to the user constraints. We exploit the flexibil-
ity of the CP framework to offer a choice between exact or approximate solutions, by
studying the use of approximate search strategies, such as local search methods.

References

1. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean Sum-of-squares
Clustering. Machine Learning 75(2), 245–248 (2009)

2. Aloise, D., Hansen, P., Liberti, L.: An improved column generation algorithm for minimum
sum-of-squares clustering. Mathematical Programming 131(1-2), 195–220 (2012)

3. Babaki, B., Guns, T., Nijssen, S.: Constrained clustering using column generation. In: Pro-
ceedings of the 11th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems. pp. 438–454 (2014)

4. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-
supervised clustering. In: Proceedings of the 21st International Conference on Machine
Learning. pp. 11–18 (2004)

5. Brusco, M., Stahl, S.: Branch-and-Bound Applications in Combinatorial Data Analysis
(Statistics and Computing). Springer, 1 edn. (2005)

6. Brusco, M.J.: An enhanced branch-and-bound algorithm for a partitioning problem. British
Journal of Mathematical and Statistical Psychology 56(1), 83–92 (2003)

7. Dao, T.B.H., Duong, K.C., Vrain, C.: A Declarative Framework for Constrained Cluster-
ing. In: Proceedings of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases. pp. 419–434 (2013)

8. Dao, T.B.H., Duong, K.C., Vrain, C.: Constrained clustering by constraint programming.
Artificial Intelligence p. DOI: 10.1016/j.artint.2015.05.006 (2015)

9. Davidson, I., Ravi, S.S.: Clustering with Constraints: Feasibility Issues and the k-Means
Algorithm. In: Proceedings of the 5th SIAM International Conference on Data Mining. pp.
138–149 (2005)

10. Davidson, I., Ravi, S.S.: The Complexity of Non-hierarchical Clustering with Instance and
Cluster Level Constraints. Data Mining Knowledge Discovery 14(1), 25–61 (2007)

11. De Raedt, L., Guns, T., Nijssen, S.: Constraint Programming for Data Mining and Machine
Learning. In: Proc. of the 24th AAAI Conference on Artificial Intelligence (2010)

12. Edwards, A.W.F., Cavalli-Sforza, L.L.: A method for cluster analysis. Biometrics 21(2), 362–
375 (1965)

13. Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Proceedings of the 5th
International Conference on Principles and Practice of Constraint Programming. pp. 189–
203 (1999)

14. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theoretical Com-
puter Science 38, 293–306 (1985)

15. Guns, T., Dries, A., Tack, G., Nijssen, S., De Raedt, L.: Miningzinc: A modeling language
for constraint-based mining. In: IJCAI (2013)

16. Guns, T., Nijssen, S., De Raedt, L.: k-Pattern set mining under constraints. IEEE Transac-
tions on Knowledge and Data Engineering 25(2), 402–418 (2013)

17. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 3rd edn. (2011)

18. Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Mathematical
Programming 79(1-3), 191–215 (1997)

19. Jensen, R.E.: A dynamic programming algorithm for cluster analysis. Journal of the Opera-
tions Research Society of America 7, 1034–1057 (1969)

20. Koontz, W.L.G., Narendra, P.M., Fukunaga, K.: A branch and bound clustering algorithm.
IEEE Trans. Comput. 24(9), 908–915 (1975)

21. Law, Y.C., Lee, J.H.M.: Global constraints for integer and set value precedence. In: Wal-
lace, M. (ed.) Proceedings of the 10th International Conference on Principles and Practice of
Constraint Programming. pp. 362–376 (2004)

22. du Merle, O., Hansen, P., Jaumard, B., Mladenovic, N.: An interior point algorithm for min-
imum sum-of-squares clustering. SIAM Journal on Scientific Computing 21(4), 1485–1505
(1999)

23. B.J. van Os, J.M.: Improving Dynamic Programming Strategies for Partitioning. Journal of
Classification (2004)

24. Pelleg, D., Baras, D.: K-means with large and noisy constraint sets. In: Machine Learning:
ECML 2007. Lecture Notes in Computer Science, vol. 4701, pp. 674–682. Springer Berlin
Heidelberg (2007)

25. Rand, W.M.: Objective Criteria for the Evaluation of Clustering Methods. Journal of the
American Statistical Association 66(336), 846–850 (1971)

26. Régin, J.C.: Arc consistency for global cardinality constraints with costs. In: Proceedings of
the 5th International Conference on Principles and Practice of Constraint Programming. pp.
390–404 (1999)

27. Steinley, D.: k-means clustering: A half-century synthesis. British Journal of Mathematical
and Statistical Psychology 59(1), 1–34 (2006)

28. Ugarte, W.R., Boizumault, P., Loudni, S., Crémilleux, B., Lepailleur, A.: Mining (soft-) sky-
patterns using dynamic CSP. In: Proceedings of the 11th International Conference on Inte-
gration of AI and OR Techniques in Constraint Programming. pp. 71–87 (2014)

29. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proceedings of the
17th International Conference on Machine Learning. pp. 1103–1110 (2000)

30. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained K-means Clustering with Back-
ground Knowledge. In: Proceedings of the 18th International Conference on Machine Learn-
ing. pp. 577–584 (2001)

