
A Filtering Algorithm for Constrained Clustering
with Within-Cluster Sum of Dissimilarities Criterion

Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Christel Vrain
Univ. Orléans, ENSI de Bourges, LIFO, EA 4022, F-45067, Orléans, France

Email: {thi-bich-hanh.dao, khanh-chuong.duong, christel.vrain}@univ-orleans.fr

Abstract—Constrained clustering is an important task in
Data Mining. In the last ten years, many works have been
done to extend classical clustering algorithms to handle user-
defined constraints, but restricted to handle one kind of
user-constraints. In a previous work [1], we have proposed
a declarative and generic framework, based on Constraint
Programming, which enables to design a clustering task by
specifying an optimization criterion and different kinds of user-
constraints. One of the criteria is the within-cluster sum of
dissimilarities, which is represented by a sum constraint and
reified equality constraints V =

∑
1≤i<j≤n

(G[i] ==G[j])aij .
A direct implementation using predefined constraints is not
effective as the propagation of theses constraints is weak. In
this paper, we consider this criterion as a global constraint
and develop a filtering algorithm for it. This filtering helps to
improve significantly the model performance. Experiments on
classical databases show the interest of our approach.

Keywords-Constrained clustering, modeling, filtering algo-
rithm

I. INTRODUCTION

Cluster analysis is an important task in Data Mining and
many algorithms have been designed for it. It has been
extended to semi-supervised clustering, so as to integrate
previous knowledge on objects or requirements on clusters.
Since its introduction [2], various kinds of user-constraints
have been integrated to clustering methods [3]. Neverthe-
less, dedicated algorithms need to be developed for each
kind of criterion and user-constraints. Developing a general
framework with the ability of handling different kinds of
constraints is still of high importance.

Relying on the declarativity inherent to Constraint Pro-
gramming (CP), several works [4], [5], [6] have investigated
the use of CP for modeling Data Mining tasks. In a previous
work [1], we have proposed a declarative and generic frame-
work, based on Constraint Programming, which enables
to design a clustering task by specifying an optimization
criterion and different kinds of user-constraints either on
the clusters or on pairs of objects. One of the optimization
criteria which can be handled by the framework is the
within-cluster sum of dissimilarities (WCSD) criterion. The
clustering task with the WCSD criterion is NP-Hard since
the weighted max-cut problem, which is NP-Complete [7],
is a particular instance of this problem with two clusters.
Algorithms for clustering in general use heuristics and find a

local optimum, and when adapted to handle user-constraints,
usually need to make compromise between the optimized
criterion and the constraints to be satisfied [3]. Our CP
model guarantees to find a global optimum satisfying all
user-constraints, if there exists a solution.

One of the key constraints of our model is a combina-
tion of a sum constraint with reified equality constraints
V =

∑
1≤i<j≤n(G[i]==G[j])aij , with V a variable, G an

array of variables and aij constants. A direct implementation
of the model using predefined constraints is not effective
as the propagation of these constraints is weak. The main
contribution of this paper is a filtering algorithm for this
constraint in case of a partitioning problem. This algorithm
takes benefit not only on the instantiated variables, but also
on the unassigned variables. It improves significantly the
efficiency of the model, makes it comparable to the best
known exact approach for WCSD criterion [8] without user-
constraints. Moreover, our model can handle and get benefits
from user-constraints.

The paper is organized as follows. After some prelimi-
naries on constrained clustering with the WCSD criterion in
Section II, Section III presents the CP model and Section IV
presents the filtering algorithm. Experiments are presented
in Section V, and conclusion and future works are given in
Section VI.

II. PRELIMINARIES

A. Clustering

Clustering is the process of grouping data into classes or
clusters, so that objects within a cluster have high similarity
but are very dissimilar to objects in other clusters. More for-
mally, we consider a database of n objectsO = {o1, . . . , on}
and a dissimilarity measure d(oi, oj) between two objects
oi and oj of O. Clustering is often seen as an optimization
problem, i.e. finding a partition of the points into k clusters
C1, . . . , Ck optimizing a criterion E. Optimized criteria may
be, among others:
• Within-Cluster Sum of Squares (WCSS) criterion:

E =

k∑
c=1

∑
oi∈Cc

||mc − oi||2

where mc is the center of cluster Cc.

• Within-Cluster Sums of Dissimilarities (WCSD) (also
called the least square criterion):

E =

k∑
c=1

∑
oi,oj∈Cc

d(oi, oj)

where oi, oj are objects in the cluster Cc. When squared
Euclidean distance is used as the dissimilarity measure,
this criterion once standardized via the division by the
size of each group,

∑k
c=1(

∑
oi,oj∈Cc

d(oi, oj))/|Cc|, is
mathematically equivalent to the Within-Cluster Sum of
Square criterion. Nevertheless, optimizing these criteria
requires different techniques.

• Absolute-error criterion:

E =

k∑
c=1

∑
oi∈Cc

d(oi, rc)

where rc is a representative object of the cluster Cc.
• Diameter-based criterion:

E = maxc∈[1,k],oi,oj∈Cc
(d(oi, oj))

E is the maximum diameter of the clusters, where the
diameter of a cluster is the maximum distance between
any two of its objects.

The clustering task with one of these criteria is NP-Hard.
Well-known algorithms such as k-means, k-medoids use
heuristics and usually find a local optimum. Exact algorithms
are much less numerous. For the WCSS criterion, the best
known exact method is a column generation algorithm [9],
which solves problems up to n = 2300. However, the ratio
n/k should be small, roughly equal to 10, in order to have
a reasonable time. For the WCSD criterion, the best known
exact method is a repetitive branch-and-bound algorithm
(RBBA) [8], where the authors claim to solve problems up
to n = 50 and k = 6.

B. Constrained-Clustering

Most clustering methods rely on an optimization criterion,
and because of the inherent complexity, search for a local
optimum. Several local optima may exist, some may be
closer to the one expected by the user. In order to better
model the task, but also in the hope of reducing the complex-
ity, user-constraints can be added, leading to Constrained-
Clustering that aims at finding clusters that satisfy user-
specified constraints. Adding user-constraints to a clustering
task allows to have a solution closer to the desired one.
For example, the well-known k-means method tends to find
homogeneous clusters and it cannot find a useful partition
for databases with clusters of different forms (e.g. Figure
1). Adding user-constraints may guide the search to a good
partition.

User-constraints can be classified into cluster-level con-
straints and instance-level constraints. Most of work on user-
constraints has been put on instance-level constraints, first

Figure 1. Clusters of different forms and sizes

introduced in [2], which state that two points must or must
not be in a same cluster. Cluster-level constraints may be
conditions on the maximal or minimal size of clusters, on
the diameter of clusters, on the minimal distance between
clusters or on the density of clusters.

In the last ten years, many classical algorithms have been
extended for handling must-link and cannot-link constraints,
as for instance an extension of COBWEB [2], of k-means
[10], [11], hierarchical non supervised clustering [12] or
spectral clustering [13], [14], etc. This is achieved either
by modifying the dissimilarity measure, or the objective
function or the search strategy. However, algorithms to
handle user-constraints are usually developed for a certain
type of constraints. To the best of our knowledge there is no
general solution to extend traditional algorithms to different
types of constraints.

Approaches for finding a global optimum with user-
constraints are less numerous and are based on Constraint
Programming [5], SAT [6], [15] or Integer Linear Program-
ming [16].

C. Related work

L. De Raedt et al. present in [5] a framework in Constraint
Programming for k-patterns set mining and show how it can
be applied to conceptual clustering. The problem consists
in finding k-patterns that do not overlap and cover all the
transactions. Given a set of transactions, each transaction
can be seen as an object and two objects are similar if they
share the same pattern. Constraints are used to express the
relationship of covering, non-overlapping, etc. Additional
constraints can be added to express the criterion function
maximizing the minimum size of clusters or minimizing the
difference between cluster sizes.

P. Boizumault et al. present in [6] and [15] a constraint-
based language expressing queries to discover patterns in
data mining. The constrained conceptual clustering problem
can be expressed in this language. The language elements
are translated into a set of clauses and a SAT solver is used
to solve the clustering task.

Mueller et al. propose in [16] an approach to con-
strained clustering based on Integer Linear Programming.
This approach takes a set of candidate clusters as input

and constructs a clustering by selecting a suitable subset.
It allows constraints on the degree of completeness of a
clustering, on the overlapping of clusters and it supports
set-level constraints which restrict the combinations of ad-
missible clusters. This approach is different as it takes into
account constraints on candidate clusters, but no constraints
on individual objects. It has different objective functions
optimizing the minimum, the mean or the median of the
individual cluster qualities in a clustering. Their framework
is flexible and guarantees to find a global optimum but
requires a set of candidate clusters. This condition makes
the framework less convenient for clustering in general, since
finding a good set of candidate clusters is a difficult task and
the number of candidate clusters is exponential compared
to the number of points. This approach is more suitable
for conceptual clustering where objects are itemsets and
candidate clusters might be created from frequent itemsets.

To the best of our knowledge, there is no exact algorithm
for clustering tasks with WCSD criterion when apply any
kind of user-constraints. In most cases, it is difficult to adjust
an approach developed without user-constraints to take into
account user-constraints. For example, in order to find an
optimal solution with n points, RBBA finds optimal solution
for problems with k+1 to n−1 points and uses those optimal
values to calculate a lower bound for next step. However,
user-constraints are defined for the full dataset of n points,
not for k + 1 to n − 1 points. In our opinion, there is no
easy way to integrate any kind of user-constraints to RBBA
or other exact algorithms.

In [1], we present a CP model, which is general for
modeling a clustering task with different types of user-
constraints and different optimization criteria. Our approach
considers the clustering problem in its original form and is
capable to proceed on qualitative and quantitative databases.
In this paper, we focus on the WCSD criterion. After the
presentation of our model (Section III), we present the
filtering algorithm, which helps to improve significantly the
model performance with this criterion (Section IV).

III. CONSTRAINT PROGRAMMING MODEL

A. Model

Variables: A solution is an assignment of each point to
a cluster. Therefore, for each point we need at least a variable
to represent this assignment. However, simply assigning a
point to a cluster index may cause symmetrical solutions that
affect significantly the performance. To break symmetries,
for each cluster c ∈ [1, k], the point with the smallest
index is considered as the representative of the cluster1. An
integer variable I[c] is introduced, its value is the index of
the representative point of cluster c; the domain of I[c] is
therefore the set of integers in [1, n]. Assigning a point to a

1It allows to have a single representation of a cluster. It must not be
confused with the notion of representative in the medoid approach.

cluster becomes assigning the point to the representative of
the cluster. Therefore, for each point i ∈ [1, n], an integer
variable G[i] ∈ [1, n] is introduced: G[i] is the representative
point of the cluster which contains the point i.

To represent the value of the criterion, we introduce a
float variable V . The domain of V is upper-bounded by the
sum of the square distances between all pairs of points.

Modeling clustering task: Relations between points and
their cluster:
• Each representative is its representative: for c ∈ [1, k],
G[I[c]] = I[c].

• Each point must be assigned to a representative: for
each i, the value of G[i] must appear in the array
I[1], . . . , I[k]. This can be expressed by n “count”
constraints: for i ∈ [1, n],

#{c | I[c]=G[i]} = 1 (1)

• A cluster representative must have the smallest index
among those in the cluster, so any point must have
its index greater or equal to its representative: for i ∈
[1, n], G[i] ≤ i.

• To avoid symmetries, cluster representatives are in an
increasing order: for c < c′, I[c] < I[c′], and the first
representative is the first point I[1] = 1.

• The WCSD criterion V is minimized, where

V =
∑

1≤i<j≤n

(G[i] == G[j])d(i, j)2. (2)

Modeling user-constraints: User-constraints can be for-
mulated directly. For instance-level constraints, a must-link
constraint on i, j is expressed by G[i] = G[j] and a cannot-
link constraint by G[i] 6= G[j]. For cluster-level constraints:
• A minimal (maximal) capacity constraint states that

each cluster must have at least (at most) a number α
(or β) of points: for c ∈ [1, k], #{i | G[i] = I[c]} ≥ α
(or #{i | G[i] = I[c]} ≤ β).

• A separation constraint states that any two clusters
must be separated by at least δ, so any two points
at a distance less than a parameter δ must be in the
same cluster: for i < j ∈ [1, n] such that d(i, j) < δ,
G[i] = G[j].

• A maximal diameter constraint states that the diameter
of each cluster must be at most γ, so any two points at
a distance greater than γ must be in different clusters:
for i < j ∈ [1, n] such that d(i, j) > γ, G[i] 6= G[j].

• A density constraint states that any point, within a
radius of ε around itself, must have at least m points in
the same cluster. So, for any point i, a set S of points
with distance from i less than ε is calculated, on which
this constraint imposes: #{j ∈ S | G[j] = G[i]} ≥ m.

B. Branching

Variables are chosen first those in I , then those in G,
which means the cluster representatives are first identified,

points are then assigned to clusters. Since a cluster represen-
tative I[c] must have the smallest index among those in the
cluster, values for I[c] are chosen in increasing order. Point
indices are then really important, by consequent, points are
ordered previously in such a way that those which are more
likely to be representative have small indices. We use FPF
(Furthest Point First) heuristic [17] to reorder points. The
first picked point is the furthest point and all the other points
have as a head this point. At each step, the point which is
the furthest from its head is picked, and the unpicked points
which are closer to this point than to their head change their
head to this point. Steps are repeated until all points are
picked. The order of points which are picked is the order of
points used in our model.

After instantiating all variables I[1], . . . , I[k], the con-
straints (1) allow to reduce the domain of each variable
G[i] to the set of indices of the representative points. The
branching on uninstanciated variables in G finds a variable
G[i] and a value c in the domain of G[i] and makes two
alternatives: G[i] = c and G[i] 6= c. The variable G[i]
is selected among those which have the smallest domain
size. The value c is always the representative of the closest
group to point i. In our model, a mixed strategy is used.
Because an upper bound is necessary for the constraint (2)
to be effective, a greedy strategy is used first to quickly
find a solution. In this step, G[i] and c are selected to make
sure that the value of V will increase as little as possible.
The solution found in general is quite good. After finding a
first solution, the search strategy is changed to a “first-fail”
search, which tends to cause the failure early. In this strategy,
the branching will try to make alternatives on frontier points,
i.e. those that make the most changes on V .

IV. FILTERING ALGORITHM FOR THE WCSD CRITERION
SUM CONSTRAINT

Using predefined constraints, Constraint (2) for the
WCSD criterion can be implemented by the following:
• A set of reified constraints: for all 1 ≤ i < j ≤ n,

Sij = (G[i] == G[j])

Sij is a boolean variable, which is equal to 1 iff G[i] =
G[j].

• A linear sum constraint:

V =
∑

1≤i<j≤n

Sijd(i, j)
2

However, these constraints, while considered independently,
do not offer enough propagation. For example, with k = 2,
given 4 points from 1 to 4 and a partial assignment where
G[1] = 1 and G[2] = G[3] = 2 as in Figure 2 (the number on
each edge {i, j} represents the value d(i, j)2). We have three
instantiated boolean variables: S12 = S13 = 0, S23 = 1 and
three uninstanciated variables S14, S24, S34 ∈ {0, 1}. Let us
assume that a solution with V = 5 was found. With the

Figure 2. Example of filtering

branch-and-bound search, this solution sets the upper bound
of variable V to 5. A new constraint is added:∑

i<j

Sijd(i, j)
2 < 5.

As S12 = S13 = 0, S23 = 1, this constraint becomes:

S14 + 2S24 + 3S34 < 4.

We can see that S24 and S34 must be equal since G[2] =
G[3] and then must not be equal to 1, otherwise the con-
straint is violated. We should then infer that point 4 cannot
be in the same cluster as points 2 and 3, that means value 2
should be removed from the domain of G[4]. This filtering
however is not done, since the constraints are considered
independently.

Several recent works have proposed more efficient filter-
ing for the sum constraint, when it is considered with other
constraints. For a sum constraint y =

∑
xi with inequality

constraints xj − xi ≤ c, a domain filtering algorithm
reduces the domain of xi when new bounds for y are known
[18]. A bound-consistency algorithm is proposed for a sum
constraint with increasing order constraints xi ≤ xi+1[19]
or with a constraint alldifferent(x1, . . . , xn)[20]. These cases
however do not fit the WCSD criterion constraint (2) . A
generic bound-consistency algorithm for a sum constraint
with a set of constraints is proposed in [21]. In our case,
the domain of G[i] is a set of representative indices, which
is not an interval in general, and where we wish to remove
inconsistent values.

We have therefore developed a filtering algorithm for a
new global constraint on a variable V , an array of variables
G of size n and an array of constants a (where aij = aji
for i, j ∈ [1, n]), which is of the form:

V =
∑

1≤i<j≤n

(G[i]==G[j])aij . (3)

Taking into account the partitioning problem, the domain
of each variable G[i] is a set of the representative indices
of all clusters, into which point i can be assigned. Let
us assume that the domain of variable V is [V.lb, V.ub)
where V.lb is the lower bound, which can initially be 0,
and V.ub is the upper bound, which can be the value of V
in the last solution with a branch-and-bound search. Suppose
that we have a partial assignment of variables in G, where
there is at least one point assigned for each group (e.g the
representative of the group, cf. sub-section III-B). Let K

be the set of points i which have been already assigned
to a group (G[i] is instanciated) and U the set of the
unassigned points. The sum in (3) is split into three parts
V = V1 + V2 + V3, where:
• V1 is the sum of dissimilarities between the assigned

points:

V1 =
∑

i,j∈K,i<j

(G[i]==G[j])aij

• V2 is the sum of dissimilarities between the unassigned
points and the assigned points:

V2 =
∑

i∈U,j∈K
(G[i]==G[j])aij

• V3 is the sum of dissimilarities between the unassigned
points:

V3 =
∑

i<j,i,j∈U
(G[i]==G[j])aij

The value of V1 can be calculated exactly because the set
K is already known. For the second part, the value of V2
is unknown because of the unassigned points. However, a
lower bound of V2, denoted by V2.lb, can be calculated by
a sum of minimum contribution of all unassigned points.
Since each unassigned point i will be assigned to a group, it
will contribute to that group a sum of dissimilarities between
point i and all the points of K that are in that group. The
minimal contribution v2i of the point i is the minimal added
amount when considering all k groups, with respect to the
assigned points:

v2i = min
c∈[1,k]

(
∑

j∈K∩Cc

aij).

A lower bound of V2 is then the sum of v2i:

V2.lb =
∑
i∈U

v2i.

For the third part, the value of V3 is unknown too and we
propose a heuristic to calculate a lower bound of V3. We
recall that V3 is the sum of all aij with i and j in the same
group. Let p = |U |, the minimal number of terms aij in
the sum V3 is the minimal number of within-group pairwise
connections2, while considering all partitions of p points into
k groups. For example, with p = 10, k = 3 and with a
partition into 3 groups of sizes 2, 3 and 5, the number of
within-group pairwise connections is 14. The minimal value
of this number is 12, corresponding to a partition into 3
groups of sizes 3, 3 and 4.

Let m be the quotient of the division of p by k and m′

the remainder. Let the number of points in each group c
be m+ αc, with αc < 0 when the group c has less than m
points, αc ≥ 0 otherwise. We have then

∑
1≤c≤k(m+αc) =

2A group is like a clique and the number of pairwise connections is the
number of edges in the clique.

Figure 3. Example of V.lb = V1 + V2.lb+ V3.lb

p = km+m′, so m′ =
∑

1≤c≤k αc. The number of pairwise
connections in a group c is (m+ αc)(m+ αc − 1)/2. The
total number for all groups is:∑

1≤c≤k(m+ αc)(m+ αc − 1)/2

= (
∑

1≤c≤k(m+ αc)
2 −

∑
1≤c≤k(m+ αc))/2

= (km2 + 2mm′ +
∑

1≤c≤k α
2
c − km−m′)/2

Since m′ =
∑

1≤c≤k αc, we have m′ ≤
∑

1≤c≤k |αc| ≤∑
1≤c≤k α

2
c (αc are integers). Therefore the total number

for all groups is greater or equal to (km2+2mm′−km)/2,
denoted by f(p) . The equality is reached when αc is 1 for
m′ groups and is 0 for k − m′ groups. With a set U of
unassigned points, with the constants aij (i, j ∈ U) ordered
increasingly, a lower bound V3, denoted by V3.lb, is then
calculated by the sum of the f(|U |) first constants in this
order.

An example is given in Figure 3 with 8 points to 2 groups
(green and red). Suppose that there are 5 assigned points (3
red points and 2 green points) and 3 unassigned points. The
value of V1 is calculated exactly by the sum of solid black
lines. The lower bound V2.lb is the sum of dash red lines
and dash green lines. With 3 unassigned points, we have
p = 3, k = 2,m = 1 and m′ = 1, the minimum total number
of connections is f(3) = (km2 + 2mm′ − km)/2 = 1.
Therefore, the lower bound V3.lb is the dot blue line.

A lower bound of variable V is given by:

V.lb = V1 + V2.lb+ V3.lb

This lower bound is used for two purposes:
• Detecting the failure during the branch-and-bound

search, it happens when V.lb ≥ V.ub.
• Filtering inconsistent values of unassigned variables.

For each value a of an unassigned variable G[i], a new
lower bound, denoted by V ′.lb, will be calculated with
the assumption G[i] = a. This value is inconsistent if
V ′.lb ≥ V.ub. For example in Figure 2, value 2 can
be removed from the domain of variable G[4] because
with the assumption G[4] = 2, the new lower bound
V ′.lb = 6, which is greater than the upper bound
V.ub = 5.

The filtering algorithm is presented in Algorithm 1. This
algorithm uses arrays add and min, where add[i, c] is the
added amount if i is assigned to group c (add[i, c] =∑

j∈K∩Cc
aij) and m[i] is the minimal added amount

while considering all possible assignments for i (m[i] =
minc add[i, c]). Since the constants aij must be ordered
increasingly in the computation of V3.lb, they are ordered
once in the array ord, so ord[pos] gives the constant aij
in the order at position pos, and px[pos] (py[pos]) gives
the index i (j, resp.) of the constant. For the time being,
the filtering algorithm is developed for the clustering task,
where values in the domain of G[i] are the representatives
of all clusters for which point i can be assigned. Given an
index a, the function gr(a) gives the index of the cluster
corresponding to a.

Algorithm 1: Filtering algorithm

1 V1 ← 0; V2.lb← 0; V3.lb← 0; V4 ← 0;
2 for i← 1 to n where G[i] is instanciated do
3 for j ← 1 to n do
4 if G[j] is instanciated and G[j] == G[i] and

i < j then V1 ← V1 + aij
5 if G[j] is not instanciated then

add[j, gr(G[i])]← add[j, gr(G[i])] + aij

6 for i← 1 to n where G[i] is not instanciated do
7 m[i]←∞;
8 foreach value a ∈ Dom(G[i]) do
9 if m[i] > add[i, gr(a)] then

m[i]← add[i, gr(a)]

10 V2.lb← V2.lb+m[i];

11 p← number of uninstanciated variables in G;
12 cpt← 0; pos← 1;
13 while cpt < f(p) do
14 i← px[pos]; j ← py[pos];
15 if G[i] is not instanciated and G[j] is not

instanciated then
16 cpt← cpt+ 1;
17 V3.lb← V3.lb+ ord[pos];
18 if cpt ≤ f(p− 1) then V4 ← V4 + ord[pos]

19 pos← pos+ 1;

20 V.lb← max(V.lb, V1 + V2.lb+ V3.lb);
21 for i← 1 to n where G[i] is not instanciated do
22 foreach value a ∈ Dom(G[i]) do
23 if

V.lb+ add[i, gr(a)]−m[i]− V3.lb+ V4 ≥ V.ub
then

24 delete a from Dom(G[i]);

The lower bound of V is revised in line 20. Lines 21 to
24 filter the domain of G[i] (i ∈ U): for each value a in the

domain, in case of assignment of i into group gr(a), a new
lower bound for V.lb is V ′.lb = V ′1 + V ′2 .lb+ V ′3 .lb with:
• V ′1 = V1 + add[i, gr(a)] because point i is supposed

to be assigned to group gr(a), the sum of dissimi-
larity between instantiated points increases a value of
add[i, gr(a)].

• V ′2 = V2.lb − m[i] because point i is no more unas-
signed, the contribution of point i in the calculation of
V2.lb must be substracted.

• V ′3 .lb is the sum of the first f(|U | − 1) elements of
ord that are related to U \ {i}. In order to reduce the
complexity of the filtering algorithm, we actually use
V4 instead of V ′3 .lb. Here, V4 is the sum of the first
f(|U | − 1) elements of ord (possibly some related to
i). It is evidence that V ′3 .lb ≥ V4.

The new lower bound is:

(V1 + add[i, gr(a)]) + (V2.lb−m[i]) + V ′3 .lb

which is greater or equal to:

V.lb+ add[i, gr(a)]−m[i]− V 3.lb+ V4

So if this last value is greater than the actual upper bound
of V , a is inconsistent.

The complexity of this algorithm is O(n2+nk), since the
domain of each G[i] is of size at most k. Since k ≤ n, the
complexity is then O(n2).

V. EXPERIMENTS

Experiments are performed on a PC Intel core i5 with 3.8
GHz and 8 GB of RAM. The model is applied to dataset
Iris from UCI repository [22]. This dataset contains 150
samples of three species of iris flowers with 4 attributes. Our
model is implemented with the Gecode 4.0.0 library3. In this
newest version of Gecode released in 2013, float variable is
supported. This property is important for our model to obtain
exact optimal value.

Interest of filtering: Without the filtering algorithm,
the propagation of the default linear sum constraint V =∑

1≤i<j≤n(G[i] == G[j])d(i, j)2 is weak because the
propagation does not consider the relationship between
variables G[i] as mentioned before. In consequence, the
model without filtering hardly solve dataset with more than
50 samples. Our filtering algorithm takes benefit from both
assigned an unassigned points to have a better lower bound
and a better filtering.

Table I shows the difference of performance of our model
in two cases: with and without the filtering. In each case,
the first column gives the number of nodes in the search
tree, whereas the second column reports the total CPU time
in seconds. The number of samples varies from n = 20 to
n = 45 and the number of classes k is set to 3.

3http://www.gecode.org

Table I
PERFORMANCE OF FILTERING ALGORITHM

n without filtering with filtering
#nodes time #nodes time

20 667 0.004 375 0.002
25 2887 0.03 599 0.004
30 17183 0.2 867 0.01
35 47901 0.8 1207 0.02
40 1362113 29.7 1663 0.04
45 5687055 145.8 2071 0.06

Table II
SEPARATION CONSTRAINT WITH IRIS

Separation Constraint WCSD Total time
no constraint 573.552 4174s
δ = 2% maxD 573.552 1452s
δ = 4% maxD 573.552 84.4s
δ = 6% maxD 573.552 0.3s
δ = 8% maxD 2169.21 0.1s
δ = 10% maxD 2412.43 0.04s

Exact solution for WCSD criterion: There are few
works dealing with finding the best optimum, and as far
as we know, no work integrates user-constraints. Without
user-constraints, our model is compared to the Repetitive
Branch-and-Bound Algorithm (RBBA) [8]4, which, to the
best of our knowledge, is the best exact algorithm for
minimum within-cluster sum of dissimilarities partitioning.
The distance between objects is the Euclidean distance
and the dissimilarity is measured as the squared Euclidean
distance. Without user-constraints, both our model and the
RBBA approach can find the optimal solution with dataset
Iris. Our model needs 4174s to complete the search whereas
RBBA takes 3249s. However, there is no exact algorithm
that handles user-constraints, while our model can handle
different kinds of user-constraints.

WCSD and separation constraint: Let us add a separa-
tion constraint δ (the margin between two clusters must be
at least δ), where δ ranges from 0% (no constraint) to 10%
of the maximum distance between two objects (maxD).
Table II reports the WCSD value of an optimal solution
with the total time for computation. It shows that when the
separation constraint is weak, the optimal WCSD value does
not change. But the computation time decreases significantly
when this additional constraint becomes stronger. The reason
is that the total number of feasible solutions decreases
and the search space is reduced. With appropriate user-
constraints, users can find meaningful partition while the
optimal solution is always guaranteed.

WCSD and must-link constraint: Let us now add must-
link (ML) constraints, where the number of ML constraints,
generated from the real classes of objects, varies from 0.2
to 1% of the total number of pairs. Results are expressed
in Table III, giving the WCSD value and the total compu-
tation time. In fact, the optimal value of WCSD, with no

4The program can be found in http://mailer.fsu.edu/˜mbrusco/

Table III
ML CONSTRAINTS WITH IRIS

ML constraints WCSD Total time
no constraint 573.552 4174s

0.2% 602.551 1275s
0.4% 602.551 35.6s
0.6% 617.012 16.1s
0.8% 622.5 3.5s

1% 622.5 1.6s

Table IV
PROPERTIES OF DATASETS

Dataset # Objects # Attributes # Clusters
Wine 178 13 3
Letter Recognition 600 16 3
Vehicle 846 18 4
GR666 666 2 not available

information on classes, does not correspond to the WCSD
found when real classes of all objects is used. The more ML
constraints are added, the less computation time is needed.
The reduction of time can be easily explained, since when
an object is instantiated, objects that must be linked to it are
immediately instantiated too. Furthermore, with any kind of
additional constraints, the total number of feasible solutions
is always equal or less than the case with no constraint.

WCSD and combination of user-constraints: As men-
tioned above, finding an exact solution for minimizing the
WCSD is difficult. However, with appropriate combination
of user-constraints, the performance can be boosted. Table
IV summarizes information about datasets for this section.
The first three datasets are from the UCI repository [22].
For the dataset Letter Recognition, only 600 objects of 3
classes are considered from the 20.000 objects in the original
dataset, they are composed of the first 200 objects of each
class. The dataset GR666 is from the library TSPLIB [23],
it contains coordinates of 666 European cities [24]. This
dataset does not contain information about the number of
clusters k and we choose k = 3 for the tests.

Table V presents some examples where our model can find
exact solution with different user-constraints which reduce
significantly the search space.

Table V
EXAMPLE OF COMBINATIONS OF USER-CONSTRAINTS

Dataset User-constraints Total time
Wine separation: δ = 1.5% maxD 11.2s

minimal capacity: α = 30
GR666 separation: δ = 1.5% maxD 12.4s

diameter: γ = 50% maxD
Letter Recognition # ML constraints = 0.1% total pairs 11.5s

CL constraints = 0.1% total pairs
separation: δ = 10% maxD

Vehicle separation: δ = 3% maxD 1.6s
diameter: γ = 40% maxD

VI. CONCLUSION

We have proposed in [1] a CP model for the constrained
clustering task with a criterion to optimize. The model
guarantees to find a global optimum if there exists one while
all user-constraints are satisfied. In this paper, we propose a
filtering algorithm for the WCSD criterion constraint. It im-
proves significantly the performance of our model. Without
user-constraints, our model is comparable to the best known
exact approach for this criterion [8]. With appropriate user-
constraints, the model is able to handle larger datasets. We
plan to improve the efficiency of our model by working
further on search strategies and on constraint propagators,
thus being able to address larger datasets. We also work
on extending the model so that it will be able to handle
constrained clustering tasks where the user does not need to
specify exactly the number k of clusters.

Moreover, the filtering algorithm was developed for a
partitioning task. We aim to generalize it in order to extend
the constraint to a more general form, so that it can be
applied to other problems, as for instance the weighted max-
cut problem.

REFERENCES

[1] T. B. H. Dao, K. C. Duong, and C. Vrain, “A declarative
framework for constrained clustering,” in European Confer-
ence on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases ECML/PKDD, 2013.

[2] K. Wagstaff and C. Cardie, “Clustering with instance-level
constraints,” in Proceedings of the Seventeenth International
Conference on Machine Learning, 2000, pp. 1103–1110.

[3] S. Basu, I. Davidson, and K. L. Wagstaff, Eds., Constrained
Clustering: Advances in Algorithms, Theory and Applica-
tions. Chapman & Hall/CRC Press, 2009.

[4] L. De Raedt, T. Guns, and S. Nijssen, “Constraint program-
ming for itemset mining,” in Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2008, pp. 204–212.

[5] L. D. Raedt, T. Guns, and S. Nijssen, “Constraint program-
ming for data mining and machine learning,” in AAAI, 2010.

[6] P. Boizumault, B. Crémilleux, M. Khiari, S. Loudni, and J.-P.
Métivier, “Discovering Knowledge using a Constraint-based
Language,” CoRR, vol. abs/1107.3407, 2011.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, 1979.

[8] M. Brusco and S. Stahl, Branch-and-Bound Applications in
Combinatorial Data Analysis (Statistics and Computing),
1st ed. Springer, Jul. 2005. [Online]. Available:
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0387250379

[9] D. Aloise, P. Hansen, and L. Liberti, “An improved column
generation algorithm for minimum sum-of-squares cluster-
ing,” Math. Program., vol. 131, no. 1-2, pp. 195–220, 2012.

[10] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrdl, “Con-
strained k-means clustering with background knowledge,” in
ICML, 2001, pp. 577–584.

[11] M. Bilenko, S. Basu, and R. J. Mooney, “Integrating con-
straints and metric learning in semi-supervised clustering,” in
Proceedings of the Twenty-First International Conference on
Machine Learning, 2004, pp. 11–18.

[12] I. Davidson and S. S. Ravi, “Agglomerative hierarchical
clustering with constraints: Theoretical and empirical results,”
PKDD, pp. 59–70, 2005.

[13] Z. Lu and M. A. Carreira-Perpinan, “Constrained spectral
clustering through affinity propagation,” in 2008 IEEE Con-
ference on Computer Vision and Pattern Recognition. IEEE,
Jun. 2008, pp. 1–8.

[14] X. Wang and I. Davidson, “Flexible constrained spectral
clustering,” in KDD ’10: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2010, pp. 563–572.

[15] J.-P. Métivier, P. Boizumault, B. Crémilleux, M. Khiari, and
S. Loudni, “Constrained Clustering Using SAT,” in IDA 2012,
LNCS 7619, 2012, pp. 207–218.

[16] M. Mueller and S. Kramer, “Integer linear programming
models for constrained clustering,” in Discovery Science,
2010, pp. 159–173.

[17] T. Gonzalez, “Clustering to minimize the maximum inter-
cluster distance,” Theoretical Computer Science, vol. 38, pp.
293–306, 1985.

[18] J.-C. Régin and M. Rueher, “Inequality-sum: a global con-
straint capturing the objective function,” RAIRO - Operations
Research, vol. 39, no. 2, pp. 123–139, 2005.

[19] T. Petit, J.-C. Régin, and N. Beldiceanu, “A θ(n) bound-
consistency algorithm for the increasing sum constraint,” in
Principles and Practice of Constraint Programming CP 2011,
2011, pp. 721–728.

[20] N. Beldiceanu, M. Carlsson, T. Petit, and J.-C. Régin, “An
o(nlogn) bound consistency algorithm for the conjunction of
an alldifferent and an inequality between a sum of variables
and a constant, and its generalization,” in ECAI, 2012, pp.
145–150.

[21] J.-C. Régin and T. Petit, “The objective sum constraint,”
in Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems CPAIOR
2011, 2011, pp. 190–195.

[22] K. Bache and M. Lichman, “UCI machine learning reposi-
tory,” 2013. [Online]. Available: http://archive.ics.uci.edu/ml

[23] G. Reinelt, “TSPLIB - A t.s.p. library,” Universität Augsburg,
Institut für Mathematik, Augsburg, Tech. Rep. 250, 1990.

[24] M. Grötschel and O. Holland, “Solution of large-scale
symmetric travelling salesman problems,” Math. Program.,
vol. 51, pp. 141–202, 1991.

